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Abstract

Political scientists have increasingly deployed conjoint survey experiments to understand

multi-dimensional choices in various settings. We begin with a general framework for analyz-

ing voter preferences in multi-attribute elections using conjoints. With this framework, we

demonstrate that the Average Marginal Component Effect (AMCE) is well-defined in terms

of individual preferences and represents a central quantity of interest to empirical scholars

of elections: the effect of a change in an attribute on a candidate or party’s expected vote

share. This property holds irrespective of the heterogeneity, strength, or interactivity of vot-

ers’ preferences and regardless of how votes are aggregated into seats. Overall, our results

indicate the essential role of AMCEs for understanding elections, a conclusion buttressed by

a corresponding literature review. We also provide practical advice on interpreting AMCEs

and discuss how conjoint data can be used to estimate other quantities of interest to electoral

studies. (144 words)
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1 Introduction

In recent years, conjoint survey experiments have been widely used in political science to study

voter preferences in elections. With a carefully designed conjoint experiment, election scholars can

study voters’ multidimensional preferences by unbiasedly estimating the causal effects of multiple

candidate attributes on hypothetical vote choices (Hainmueller, Hopkins and Yamamoto, 2014). At

the core of this approach is a causal quantity of interest, the Average Marginal Component Effect

(AMCE), which represents how much the probability of choosing a candidate would change on

average if one of the candidate’s attributes were switched from one level to another (Hainmueller,

Hopkins and Yamamoto, 2014). The introduction of this approach sparked numerous conjoint

applications, many focused on electoral politics (see Bansak et al., forthcoming, for a review).

It has also prompted the development of statistical tools (Egami and Imai, 2019; de la Cuesta,

Egami and Imai, 2019; Hanretty, Lauderdale and Vivyan, 2020).

There are many situations of interest to social scientists which seem ripe for analysis through

conjoint designs, as they present individuals with the opportunity to rank or choose between

bundles comprised of multiple attributes. Voting behavior certainly has these elements, but so,

too, do choices about which immigrants to admit, which policy packages to adopt, and various

other topics (e.g. Mummolo and Nall, 2016; Adida, Lo and Platas, 2017). To date, however,

the empirical adoption of conjoint designs has outpaced theoretical discussions of what quantities

conjoint designs can—and cannot—recover. As a result, some scholars have critiqued common

practices for analyzing and interpreting conjoint experiments (e.g. Leeper, Hobolt and Tilley,

forthcoming; Abramson, Koçak and Magazinnik, 2019).

Here, we illuminate the conceptual microfoundations underpinning the AMCE and compare

the AMCE with other possible quantities of interest that are also applicable to paired-profile,

forced-choice conjoint designs and can be defined under our common framework. In unpacking

the AMCE, we clarify how it should and should not be interpreted, and we highlight how it

aggregates individual-level preferences into a central quantity of interest for electoral scholars.

We show that when applied to elections, the AMCE has a straightforward, politically meaningful

interpretation as the average causal effect of an attribute on a candidate’s or party’s expected vote

share. Importantly, this equivalence between AMCEs and effects on vote shares holds regardless

of the structure of voter preferences. Through a literature review of 82 articles in four electoral
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politics journals, we demonstrate that vote shares and their individual-level analogs are indeed by

far the most common estimands in empirical electoral research.

The AMCE thus provides a fitting tool for researchers using conjoints to study the effects

of candidate or party attributes on vote shares. AMCEs not only identify a core quantity of

interest involving the central outcome in research on elections and voting, they are also easy to

estimate and do not rely on arbitrary functional form assumptions. To be sure, for the results

to translate meaningfully to real-world elections, scholars still need to ensure that their conjoint

designs are well crafted by paying close attention to the selection of the sample, the inclusion of

relevant attributes, the set-up’s realism, the number of attributes and tasks, and the attributes’

randomization distribution (see Bansak et al., forthcoming; Hainmueller, Hopkins and Yamamoto,

2014; de la Cuesta, Egami and Imai, 2019, for discussion of these issues).

The fact that the AMCE recovers a key quantity of interest to election scholars does not

mean it is the only appropriate estimand in conjoint analyses of elections. Thus, we also examine

how paired-profile forced-choice conjoint data could be used to study other electoral quantities of

interest. Specifically, we distinguish between two main alternatives that are distinct from effects

on vote shares. The first is the effect of an attribute on a candidate’s probability of winning

an election. The second is the fraction of voters who prefer a specific attribute, the focus of

Abramson, Koçak and Magazinnik (2019). We define these alternative quantities under the same

framework used to define the AMCE, thereby formalizing how they are distinct from each other

and the AMCE.

This analysis produces two main insights. First, effects on the probability of winning are a

meaningful estimand in studying the outcomes of elections between multi-attribute candidates.

Yet, due to the non-linearity built into majority rule, estimating such effects requires a model-

based approach to approximate a high-dimensional conditional expectation function. In contrast,

the AMCE can be estimated without such modeling assumptions via a design-based approach

motivated purely by the randomization. We provide sketches of possible estimation procedures

for the probability of winning we consider promising for future research. Second, the quantity

representing the fraction of voters who prefer an attribute is associated with fundamental problems

both in terms of interpretation and estimation. It is not directly informative about a given

attribute’s effect on election outcomes between multi-attribute candidates and is substantially
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more challenging to estimate than even the probability of winning.

The conclusion provides practical guidance for applied researchers employing conjoint exper-

iments and suggests possible paths for future research. Overall, this paper contributes to the

growing methodological literature on conjoint experiments by grounding the most commonly used

causal estimand—the AMCE—in a foundational theory of individual preferences and showing its

interpretability as a key quantity of interest to electoral scholars.

2 Microfounding the AMCE

To provide microfoundations for the AMCE, we first present a general framework for analyzing

voter preferences in multi-attribute elections, where candidates are characterized by multiple ob-

served attributes.1 We then use the framework to show how the AMCE relates to individual

preferences, highlighting the important role of relative preference intensity. A key implication of

this approach is that the AMCE identifies a central quantity of interest in electoral research: the

average effect of an attribute on expected vote shares.

2.1 Formalizing Preferences in Multi-Attribute Elections

Consider a paired-profile, forced-choice conjoint experiment, where each respondent i ∈ {1, ..., N}

completes a series of K tasks in which the respondent casts hypothetical votes between two

candidates varying across L attributes. Each of the L attributes takes on Dl discrete levels,

respectively, such that l ∈ {1, ..., L}. One can view this design as a simulation of a two-candidate

election in which citizens vote for one of two candidates varying across L observed attributes.

As an illustration, consider a toy example in which candidates are characterized by three binary

attributes (i.e., L = 3, D1 = D2 = D3 = 2). We label these attributes A, B, and C, respectively,

and denote their levels by 0 and 1, such that A ∈ {0, 1}, B ∈ {0, 1}, and C ∈ {0, 1}. These values

then fully characterize the election’s candidates. We use [abc] to denote a candidate (or conjoint

profile) whose values on these attributes are such that A = a, B = b and C = c. There are 23 = 8

possible unique candidates to be voted on, i.e., [000], [001], [010], [011], [100], [101], [110], and

1The same framework can be applied to other multi-dimensional choices, such as consumers selecting among
multi-dimensional products.
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Table 1: Candidate Preference Rankings for Three Types of Voters

Profile Attribute Profile Rank:
Number A B C Type 1 Type 2 Type 3

1 1 1 1 1 2 6
2 1 1 0 2 6 2
3 1 0 1 3 4 8
4 1 0 0 4 8 4
5 0 1 1 5 1 5
6 0 1 0 6 5 1
7 0 0 1 7 3 7
8 0 0 0 8 7 3

Shows the preference ranking for three types of voters over
profiles of candidates defined by three binary attributes
A, B, and C.

[111]. More generally, there are
∏L

l=1Dl possible unique candidates.

Given a choice where alternatives are characterized by multiple attributes, a natural way to

formalize individual preferences is to consider a preference ordering over the full set of possible

unique attribute combinations. Namely, we define each voter’s preferences to be binary relations

over the set of possible unique candidates. To simplify exposition, we assume that each voter has a

strict preference ordering over all
∏L

l=1Dl unique candidates. For example, consider the “Type 1”

voter in Table 1. In the Table, the 8 possible candidates (defined in the second to fourth columns

from the left) are ordered from top to bottom according to the Type 1 voter’s preference ranking

(the third column from the right). This preference can also be represented using standard decision-

theoretic notation, such that [111] � [110] � [101] � [100] � [011] � [010] � [001] � [000].

2.2 Defining the AMCE

Since elections are means of preference aggregation, electoral researchers may ask how one can learn

about collective decisions from individual preferences expressed through conjoint experiments.

That is, how can we aggregate individual conjoint responses into meaningful quantities of interest?

It is fruitful to begin with several desirable criteria for any such aggregate preference measure.

First, the quantity of interest should capture the multidimensionality of the typical electoral choice

task, in which voters choose between candidates differing across many dimensions simultaneously.
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Second, the quantity should map onto a meaningful empirical phenomenon of interest, such that

electoral researchers can make causal or predictive inferences about elections based on the quantity.

Finally, the quantity should be empirically tractable, in the sense that researchers can use observed

data from conjoint experiments to estimate the quantity with sufficient precision and ideally

without strong modeling assumptions.

The Average Marginal Component Effect (AMCE) is one quantity of interest for evaluating

an aggregate relationship between attributes and preferences, and, as detailed below, the AMCE

meets all three criteria. First, the AMCE aggregates preference orderings over all possible profiles

in a systematic manner that accounts for the multidimensional nature of the electoral decision

problem by incorporating not only the directionality but also the intensity of preferences. Second,

the AMCE directly represents the causal effect of a particular attribute on a candidate’s expected

vote share, which a literature review reveals as the most prominent causal quantity of interest

for electoral scholars. Third, identification and unbiased estimation of the AMCE can proceed

under a limited set of assumptions and via straightforward nonparametric methods, as has been

previously shown (Hainmueller, Hopkins and Yamamoto, 2014). The remainder of this section

highlights each feature.

To define the AMCE under the current set-up, let Yi([abc], [a
′b′c′]) ∈ {0, 1} denote voter i’s

potential outcome given a paired forced-choice contest between profiles [abc] and [a′b′c′]. The

potential outcome would take on a value of 1 if respondent i would choose the first candidate (i.e.

[abc]) given the choice task, which would occur if and only if [abc] � [a′b′c′] for that respondent.

In contrast, Yi([abc], [a
′b′c′]) = 0 if respondent i chooses the second candidate (i.e. [a′b′c′]), which

is the case if and only if [a′b′c′] � [abc] for that respondent. Then, the AMCE for attribute A is

defined as the expected difference between the potential outcomes for all paired contests where

attribute A for the first candidate equals 1 and the potential outcomes for all contests where A

equals 0 for the first candidate, given a known, pre-specified distribution of the other attributes.

So without loss of generality, the AMCE for attribute A is given by:

AMCEA ≡ E
[
Yi([1BC], [A′B′C ′])− Yi([0BC], [A′B′C ′])

]
, (1)

where the expectation is defined over both the joint distribution of the candidate attributes from
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which all attributes other than A for the first candidate (i.e., B,C,A′, B′ and C ′) are drawn, as

well as the sampling distribution for the N respondents from the target population of voters. The

AMCEs for attributes B and C are defined analogously, and the definition extends to conjoint

designs with more attributes, attributes with more than two levels, non-forced-choice outcomes,

and tasks with more than two profiles, with appropriate notational changes.

A few remarks are useful. First, note that the AMCE aggregates individual preferences with

respect to two dimensions: across attributes and voters. Specifically, the AMCE employs averaging

of individual preferences both across the set of possible candidates and across voters in the target

population. This is in contrast to other means of preference aggregation, such as simple majority

rule. As discussed later in this section, the double averaging turns out to imply several desirable

properties of the AMCE including substantive relevance and empirical tractability.

Second, note that the relevant contrast for the AMCE is between attribute A = 1 for the

first profile and A = 0 for the same profile, both against another profile randomly drawn from

the pre-specified distribution. Suppose attribute A is gender, such that A = 1 means a female

candidate and A = 0 means a male candidate. Then, AMCEA compares the probability of

a female candidate profile chosen against another randomly generated profile (whether male or

female) to the probability of a male profile chosen against a similarly generated profile. That is,

the AMCE asks how much better or worse a randomly selected candidate would fare if gender

switches from male to female. In particular, the AMCE is not the probability of a female candidate

being chosen against a randomly generated male candidate. This difference has been a point of

confusion in some applied work.

2.3 The AMCE and Preference Intensity

The first of the AMCE’s desirable properties is that it captures the multidimensionality of the

choice task in conjoint experiments. It does so by incorporating both the direction and intensity of

preferences about individual attributes through averaging the ranks of profiles. Continuing with

the three-attribute example, let ri(a, b, c) ∈ {1, ..., 8} represent the rank of profile [abc] for voter

i. Then, consider a voter’s average rank for the profiles that contain a particular attribute level,

such that the average rank of A = a for voter i is defined as SA
i (a) ≡ 1

4

∑
b∈{0,1}

∑
c∈{0,1} ri(a, b, c).

Comparing a voter’s average ranks with respect to different levels of an attribute (e.g., SA
i (1) vs.
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Table 2: Average Ranks by Attribute

Average Rank:
Attribute Value Type 1 Type 2 Type 3

A 0 6.5 4.0 4.0
A 1 2.5 5.0 5.0
B 0 5.5 5.5 5.5
B 1 3.5 3.5 3.5
C 0 5.0 6.5 2.5
C 1 4.0 2.5 6.5

Shows the average ranks for profiles of candidates with
and without a given attribute for the three types of voters.
Type 1 voters have a intense preference for A, a moderate
preference for B, and a mild preference for C. Type 2 vot-
ers have mild preference for not A, a moderate preference
for B, and a intense preference for C. Type 3 voters have
mild preference for not A, a moderate preference for B,
and a intense preference for not C.

SA
i (0)) captures not only the directionality but also the intensity of her preferences with respect

to the attribute.

For example, consider the Type 1 voter in Table 1. Intuitively, this voter strongly favors A = 1

to A = 0 because profiles containing A = 1 are more highly ranked than any profile containing

A = 0 irrespective of the other attributes. For attribute B, the voter favors profiles with B = 1

to those with B = 0, but only in so far as the profiles are not better in terms of A. As for C,

the voter generally likes profiles with C = 1 better than those with C = 0, but the value of C

only influences the final ranking when the profiles are tied in terms of all other attributes. Thus,

we can summarize these preferences as an intense preference for A = 1 to A = 0, a moderate

preference for B = 1 to B = 0, and a mild preference for C = 1 to C = 0.

Considering the average profile ranks with respect to different attribute levels captures these

intuitions accurately. For illustration, the average ranks for the Type 1 voter are provided in

Table 2. The average rank for a Type 1 voter i of A = 1, SA
i (1), is equal to 2.5, while the average

rank of A = 0 is 6.5. This implies that the voter prefers A = 1 to A = 0. Similarly, SB
i (1) = 3.5

and SB
i (0) = 5.5, implying B = 1 is preferred to B = 0. Likewise, SC

i (1) = 4 and SC
i (0) = 5, so

that C = 1 is preferred to C = 0. The relative values of the rank means provide a natural metric

for the intensity of the voter’s preferences for each attribute: for attributes A, B and C, the rank
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means are 2.5 vs. 6.5 (intense preference), 3.5 vs. 5.5 (moderate preference), and 4 vs. 5 (mild

preference), respectively. Incorporating these differences in the intensity of the preferences over

attributes is key for capturing the importance of the attributes for the resulting vote choices in

contests between multi-dimensional profiles.

The AMCE is, in fact, directly related to these average rankings. Using a difference between the

average ranks as a measure of the extent to which a voter prefers a particular level of the attribute

over the other level (e.g., SA
i (1) − SA

i (0)), one can further quantify the aggregate preference

for A = 1 over A = 0 across all voters by taking the average value of SA
i (1) − SA

i (0) across

i ∈ {1, ..., N}, which we denote by S̄A(1)−S̄A(0). As shown by Abramson, Koçak and Magazinnik

(2019), the AMCE for A = 1 relative to A = 0 is proportional to S̄A(1) − S̄A(0), such that

AMCEA ∝ S̄A(1) − S̄A(0) as defined in equation (1). Seen in this way, it is clear that the

AMCE represents an aggregation of individual preferences that explicitly accounts for intensity,

as SA
i (1) − SA

i (0) represents an individual voter’s relative intensity of preference for A = 1 over

A = 0, and S̄A(1)− S̄A(0) averages this across voters.

Why is the quantification of preference intensity, in addition to binary preference relations,

valuable? After all, a cursory extrapolation from classical social choice theory might lead one to

believe that the relative intensity of individual preferences should not determine collective choice

outcomes. Such reasoning, however, is misleading when one takes the multidimensionality of pref-

erences into consideration. In real-world elections where votes are cast for candidates characterized

by multiple attributes, candidates in any particular match-up are likely to differ across multiple

attributes. In such multidimensional choice settings where ceteris paribus comparisons almost

never occur, the intensity of preferences plays a crucial role in determining voters’ selections.

As an example, consider its implications for an attribute on which voters may hold largely

homogeneous views but that is trivial from the practical standpoint of voter choice, such as

candidates’ handedness (i.e. right-handed vs. left-handed) as one of several candidate attributes.

For the sake of argument, assume that a voter would all else equal rather choose a candidate who

shares the same handedness as she does. Because the vast majority of people are right-handed,

there would be a pronounced ceteris paribus majority preference for right-handedness over left-

handedness. Indeed, given the overwhelming extent to which the world is right-handed, we might

then even expect the size of this majority preference for right-handedness (i.e. the fraction of voters
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who prefer this attribute all else equal) to exceed that for any other attributes in the evaluation

(e.g. age, previous experience, policy positions, etc.).

This result, of course, obscures our understanding of real-world voter choice, in which candi-

dates differ across many different attributes and voters need to choose candidates based not on

their ceteris paribus preferences with respect to individual attributes but rather the balance of

their preference intensity across all attributes. If one were to consider voters’ preference inten-

sity via the average rank framework above, voters’ preference for a right-handed candidate would

be trivially mild, as the average rank of right-handed candidates would be only slightly higher

than that of left-handed candidates. This reflects real-world voting behavior: it goes without

saying that in the real world, voters would ignore the handedness information when presented

with multidimensional candidate profiles and make their choices as a function of the attributes

they deemed relevant (such as party affiliation, policy positions, etc.). By taking preference inten-

sity into account, the AMCE captures this real-world behavior; in this example, the AMCE for

right-handedness would be near zero.

Indeed, the importance of preference intensity for election outcomes has long been recognized

in the large literature on probabilistic voting models. Such models are based on the idea that

vote decisions reflect uncertainty and are therefore probabilistic, rather than deterministic (see

e.g. Lindbeck and Weibull (1987); Coughlin (1992); Enelow and Hinich (1989)). Typically, voter

decisions are modeled as the sum of two utility components: a systematic component that re-

flects the utility voters derive from observed candidate attributes (e.g. platforms or candidate

characteristics) and a random utility shock in the evaluation of candidates that reflects residual

uncertainty in preferences. In comparing candidates, voters back the candidate whose overall util-

ity is higher.2 A tenet of probabilistic voting models is that all voters have some influence on the

election outcome and not just the median voter. In fact, a canonical result is that the aggregate

voting outcome (i.e. net vote share) is driven by the mean (deterministic part of) utility of voters,

and not the median utility. Under standard regularity conditions, the expected vote share of a

candidate reflects the sum of utilities that voters derive from the candidate’s observed attributes.

In particular, if there are many voters of each preference type, then expected vote shares reflect

both the number of voters who prefer a candidate with certain attributes and the intensities of

2This is similar to the random utility framework often used to motivate discrete choice models, such as multi-
nomial or conditional logits (see e.g. Train (2009); Schofield (2007)).
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each voter type’s preferences over the attributes.3 As we show below, the AMCE represents the

effect of a candidate attribute on the expected vote share. One interpretation, then, is that the

AMCE reflects the change in the average voter utility that results from changing a candidate

attribute.

2.4 The AMCE as the Effect on Vote Shares

The second desirable property of the AMCE is that it represents a quantity of broad interest to

empirical elections scholars: the average causal effect of an attribute on vote shares. Specifically,

in a forced-choice conjoint experiment, the AMCE equals the expected difference in the choice

probability of a candidate with a treatment attribute level (e.g. gender = female) and that of

a candidate with the baseline level of the same attribute (e.g. male) in an election with the

same number of candidates (i.e. two in a typical paired conjoint experiment). Importantly, this

property holds regardless of the structure of individual voters’ preferences. AMCEs identify vote

shares irrespective of whether the intensity of voters’ preferences about individual attributes is

homogeneous or heterogeneous, or whether there are interactions between candidate attributes in

shaping voter preferences. The property also holds independently of the electoral formulae used

for aggregating votes into seats, making the AMCE a useful quantity for both majoritarian and

proportional representation (PR) elections.

Taken literally, the AMCE is only well-defined in the context of a conjoint experiment. That

is, estimating AMCEA corresponds to asking the following question: if we randomly draw a

female candidate and her opponent from the set of possible candidate profiles, how much more

likely is the female candidate to win the paired forced-choice conjoint task, compared to a male

candidate randomly drawn in the same manner on average? This quantity is of interest to many

applied researchers of political behavior in and of itself, since the conjoint choice tasks themselves

can be robust and reliable measure of attitudes and opinions (e.g. Bansak et al., 2019; Jenke

et al., Forthcoming). Nonetheless, a crucial question for many scholars of elections is whether

the AMCE is also informative about elections and about the aggregation of individual preferences

3Our rank-based framework for individual preferences is deterministic, rather than probabilistic. However, the
two frameworks are analogous in that utility is aggregated across voters by marginalizing a component of voter
utility over its distribution. That is, while the AMCE for an attribute under our rank-based preferences results
from averaging over the distribution of the other attributes, the expected vote share under the probabilistic voting
model is derived from integrating out the stochastic component of the utility.
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implemented through such elections. That is, is the AMCE informative about voter preferences

in a way that maps onto electoral quantities of interest?

Here, we show that the AMCE also equals a quantity summarizing the causal effect of a candi-

date attribute on vote shares in an election matching the specifications of the conjoint experiment.

By vote share, we simply mean the percentage of votes cast for a candidate in an election. The

AMCE of an attribute in a conjoint experiment appropriately designed to resemble an election

can be interpreted as the average causal effect of the attribute on the vote share of a randomly

selected candidate with that attribute (as opposed to the baseline level of the same attribute) in

the election. Thus, the AMCE is interpretable in terms that are directly relevant for the study of

elections.

To make our point formally, we define a target election to be represented by a pair 〈A,V〉, where

A and V refer to the target attribute distribution and the target voter distribution, respectively.

The attribute distribution A is a probability measure on the combinations of candidate attributes,

whereas the voter distribution V is a probability measure on a collection of individual preferences

over the attribute combinations in the support of A. For example, consider Table 1, which

represents the toy example of an election with candidates with three binary attributes and three

types of voters. The attribute distribution is a probability mass function over the eight possible

attribute combinations or profiles (i.e. rows in the left half of the table). For instance, it could

be a uniform categorical distribution over the eight possible profiles. The voter distribution, in

turn, is a probability mass function over the three types of voters (i.e. columns in the right half

of the table), for example Pr(Type 1) = .3,Pr(Type 2) = .4, and Pr(Type 3) = .3. Note that the

word “target” in these definitions indicates that these distributions usually correspond to some

populations of voters and candidates that are of interest to the researcher, such as those resembling

candidates and voters in a real-world election.

Now, consider a conjoint survey experiment on a representative sample of respondents randomly

drawn from the target voter distribution V . Furthermore, suppose that profiles are randomly

generated according to the target attribute distribution A. Then it follows that the AMCE of

each attribute under the design can be interpreted as the average effect of that attribute on vote

shares for candidates in the target election 〈A,V〉. The general result is stated in the following

proposition.
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Proposition 1 (Identification of the Expected Difference in Vote Shares with the AMCE)

Consider a J-profile conjoint experiment in which respondents are a simple random sample of size

N drawn from V. Then, the AMCE for attribute A = a (versus the baseline level A = a0) given

the randomization distribution A identifies the difference in the expected vote share of a candidate

with A = a and a candidate with A = a0 in the target election 〈A,V〉 with J candidates.

The proposition follows trivially from the definitions of the AMCE and the target election, noting

that the expected value of the conjoint potential outcome for a profile set (e.g., E[Yi([abc], [a
′b′c′])])

equals the proportion of the votes cast for the first candidate in the corresponding target election.

(A formal proof is therefore omitted.) Of note, Proposition 1 holds not only for the paired forced-

choice conjoint design but also more generally for designs with J > 2 profiles per choice task. This

means that the AMCE allows researchers to use a J-profile conjoint design to study vote shares

in J-candidate single-vote elections.

Proposition 1 implies that scholars of elections can use appropriately designed conjoint survey

experiments to predict vote shares of candidates in elections and interpret the resulting AMCE

estimates as the causal effects of candidate attributes on predicted vote shares. For example, an

AMCE of 0.2 for a male candidate versus a female candidate indicates that gender has an average

causal effect of 20 percentage points on candidates’ vote shares in an election that resembles the

design of the conjoint experiment: on average, a randomly selected female candidate in the election

would earn 20 points more of the total vote share if her gender were male. The AMCE is thus

informative about voter preferences expressed through votes in elections.

But how common are vote shares as a quantity of interest in empirical research on elections?

We conducted a literature review including all articles on voting in four journals that commonly

publish studies on voting behavior between 2015 and 2019.4 We find that of the sample of 82

articles that we reviewed, 87% include either aggregate vote shares or their individual-level analogs

as one key outcome. The small minority of studies that do not feature outcomes related to vote

shares instead have outcomes such as the probability of a candidate or party winning. Thus,

not only does the AMCE recover a politically and electorally meaningful quantity, it recovers a

quantity that has been the primary quantity of interest even in most non-conjoint studies in recent

years.

4Appendix A.1 describes more details of our review procedure.
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3 Beyond AMCEs: Alternative Quantities of Interest

The AMCE has desirable properties and a straightforward interpretation as a causal effect on the

expected vote share. But there are of course a range of election-related outcomes that may be of

interest to researchers implementing paired-profile forced-choice conjoint designs.

Here, we employ our framework to define a number of other quantities of interest from conjoint

experiments that are of potential use for electoral researchers.5 We also provide sketches of possible

estimation using model-based procedures, but more detailed technical discussion is beyond the

scope of this paper and left for future research. We view these as potentially promising approaches

for using conjoint data to investigate and estimate various electoral quantities. Importantly,

however, the additional challenges of these procedures relative to estimating AMCEs highlights

the unique tractability of estimating the AMCE and the change in vote share that it represents.

In general, estimators designed for the AMCE are not appropriate for estimating alternative

quantities, such as the probability of winning. This is thoroughly unsurprising, since the AMCE

and these quantities are different estimands, mathematically and substantively. Indeed, electoral

systems research has long recognized that vote shares do not linearly translate into, for instance,

seat shares except under purely proportional representation rules (e.g., Taagepera and Shugart,

1989). However, Abramson, Koçak and Magazinnik (2019) criticize the AMCE’s use precisely

because of this incongruity with alternative quantities of interest. Although such critiques remind

us that different preference aggregation mechanisms can produce different results, it is not fruitful

to ask whether the AMCE is informative about alternative quantities. A more productive question,

tackled next, is whether other estimation strategies can be used to make valid inferences about

other useful quantities based on conjoint data.

3.1 Probability of Winning

In a paired-profile forced-choice conjoint simulating a two-candidate election, a natural quantity of

interest is the probability of winning, or the probability that one candidate will win a majority of

the votes against another. To formalize this quantity using our framework, recall that respondent

i chooses candidate [abc] over candidate [a′b′c′] if and only if Yi([abc], [a
′b′c′]) = 1. Candidate [abc]

5Related work explores estimation strategies for quantities other than the AMCE from conjoint data, such as
interaction effects (Egami and Imai, 2019) and issue importance (Hanretty, Lauderdale and Vivyan, 2020).
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therefore wins a majority vote against candidate [a′b′c′] if and only if:

EV [Yi([abc], [a
′b′c′])] > 0.5, (2)

where the expectation EV is defined over the target voter distribution, V . In words, candidate

[abc] wins a majority vote against candidate [a′b′c′] if more than half of respondents drawn from

the target voter distribution would choose [abc] over [a′b′c′] in a conjoint task, or equivalently if

[abc] � [a′b′c′] for more than half of respondents.

Equation (2) constitutes a building block for various possible quantities of interest that we

call probabilities of winning. Let M([ABC], [A′B′C ′]) ≡ 1{EV [Yi([ABC], [A′B′C ′])] > 0.5}, a

binary random variable representing whether profile [ABC] wins a majority of votes against profile

[A′B′C ′]. For example, suppose that the researcher is interested in how likely a candidate with

attributes A = a, B = b and C = c is to win a majority against another candidate randomly

drawn from the target population of candidates. This probability can be written as,

EA [M([abc], [A′B′C ′])] , (3)

where the expectation EA is taken with respect to the target attribute distribution A, which the

attributes of the second candidate A′,B′ and C ′ are drawn from. Alternatively, the researcher

might be interested in a particular attribute (e.g., A = a) and how likely a candidate with that

attribute is to win against another candidate under majority rule. This alternative quantity can

be defined as,

EA [M([aBC], [A′B′C ′])] , (4)

where the expectation now averages over the first candidate’s attributes other than A as well as the

second candidate’s attributes. Yet another possible quantity of interest is how often a candidate

with attribute A = a will win against a candidate with attribute A = a′. This probability can

also be expressed in terms of equation (2), such that

EA [M([aBC], [a′B′C ′])] , (5)
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where the expectation is now defined with respect to the distribution of B, C, B′ and C ′.6

The choice between different conceptions of the probability of winning depends on researchers’

substantive question. For example, the researchers might be interested in a particular real-world

politician and ask how likely a similar candidate is to win an electoral majority were she to run.

Equation (3) is an appropriate quantity of interest for such researchers. Alternatively, researchers

might want to learn how likely a female candidate is to win a majority, either against a candidate

randomly drawn from the target population of candidates (equation (4) is appropriate) or against

a male candidate drawn from the population (equation (5) is appropriate). Regardless of the

choice of estimand, it is imperative to clarify one’s substantive question of interest and map it to

an estimand that is well defined in terms of the potential outcomes.

Inference about the probability of winning proves much more challenging than inference about

AMCEs. This is due to the nonlinearity built into majority rule (or, more generally, into the

electoral formula which translates votes into seats) and the resulting high dimensionality of the

estimation problem. To see the challenge, consider estimating the probability of winning for a

female candidate against a male candidate, i.e., equation (5) where A = a (a′) represents the

candidate’s gender being female. Without any additional assumptions about the functional form

of the potential outcomes, we can obtain a sample analog of equation (5) as follows: calculate the

vote share for a female candidate for each of the Q possible unique contests between a female and

a male, determine whether the female candidate wins the majority in each unique contest, and

calculate the average of the resulting binary indicators over the Q contests.

Although this non-parametric plug-in estimator is consistent for equation (4) as the numbers

of respondents (N) and tasks (K) grow infinitely for a fixed number of attributes (L), a practical

difficulty is that Q is very large compared to the sample size (NK) in typical conjoint experiments,

making the data too sparse for the inferential problem at hand. For example, with eight binary

attributes, there areQ = 2(8−1)×2−1 = 16, 383 possible unique contests between a female candidate

and a male candidate. This means that, with 1,000 respondents each completing 20 tasks, we can

6The discussion in this subsection naturally extends to elections with more than two candidates. In designs
with more than two profiles per task, we can define analogous quantities representing seat shares in multiparty
plurality elections. For example, the probability of winning greater than some proportion t of the vote share in a
J-way single-vote election is a general case of the probability of winning, and the estimation procedure described
below can be adapted to accommodate this case by simply including any number J of profiles in the modeling of
f and replacing 0.5 with any threshold t of interest in the modeling of M .
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only expect to have slightly more than one observation to estimate a majority winner for each

possible pairwise comparison. Thus, the fully nonparametric estimator is impractical in all but

the simplest conjoint experiments.

More promising would be a model-based approach which explicitly models the majority in-

dicator M([ABC], [A′B′C ′]) as a function of the attributes. Here, we provide a sketch of one

potential approach, leaving a comprehensive exposition for future work. We begin by noting that

EV [Yi([abc], [a
′b′c′])] = EV [Yi | A = a,B = b, C = c, A′ = a′, B′ = b′, C ′ = c′] = Pr(Yi = 1 |

A = a,B = b, C = c, A′ = a′, B′ = b′, C ′ = c′) for any (a, b, c, a′, b′, c′) in the support of A when

attributes are randomly assigned. Then, a model-based approach would begin by modeling the

following, which we will denote as f for shorthand:

f(A,B,C,A′, B′, C ′) ≡ Pr(Yi = 1|A,B,C,A′, B′, C ′).

This is a classical discrete choice problem in which the size of the choice set equals two (and

hence it easily generalizes to forced choice tasks with more than two profiles), and we can employ

a standard modeling strategy for discrete choice outcomes such as the conditional logit model

(McFadden, 1974).7 This is akin to the approach to conjoint survey data traditionally used in

marketing research (e.g., McFadden, 1986).

Given the increased dimensionality when including attributes from both profiles in the function,

as well as modeling their interactions, it could be useful to additionally employ methods from

statistical learning to improve predictive performance in the face of potentially high-dimensional

feature spaces. For instance, shrinkage penalties could be layered atop generalized linear models

(GLMs) and their multinomial extensions to model f using an elastic net regularized regression

framework (e.g., Reid and Tibshirani, 2014; Egami and Imai, 2019). Alternatively, f could be

modeled using quasi-parametric learning approaches in place of GLMs, such as random forests,

boosted trees, or neural nets (e.g., Prinzie and Van den Poel, 2008). Best practices in supervised

learning theory (e.g. model training via cross-validation) is vital, and researchers could allow both

theory and cross-validation performance to guide model selection.

Once we obtain a high-performing predictive model f , it is straightforward to estimate the

7For paired conjoints, we can also fit a model equivalent to the conditional logit via a binary logit regression of
Yi on the differences of the attributes (i.e., A−A′, B −B′, etc.)
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probability of winning of interest. First, given an estimated model f̂ , one can estimate the vote

share for any profile [abc] over any other profile [a′b′c′] using f̂(a, b, c, a′, b′, c′). The majority

classifier can then be obtained as M̂([ABC], [A′B′C ′]) = 1{f̂(A,B,C,A′, B′, C ′) > 0.5}, which

allows one to predict whether or not [abc] would win a majority over [a′b′c′] from the target

population of voters, V . Finally, one can estimate the expectation of M by averaging M̂ over the

distribution of the attributes corresponding to the target probability of winning. This final step

is straightforward since the averaging is with respect to a known sub-distribution of the overall

attribute distribution A. To estimate the probability of a female candidate winning against a male

candidate (i.e., equation (5)), for example, the following estimator can be used:

∑
b,c,b′,c′

Pr([ABC] = [abc], [A′B′C ′] = [a′b′c′]|A = a,A′ = a′) · M̂([abc], [a′b′c′]), (6)

where the sum is taken over the possible values of B, C, B′, and C ′ under the target attribute

distribution A, conditional on A = a and A′ = a′.

The procedure outlined above represents a potentially viable approach to estimating the prob-

ability of winning with conjoint data. Unlike the estimation of the AMCE, however, the procedure

involves the complex problem of modeling a high-dimensional response function, so care must be

taken. In particular, validation of the final model is paramount. We remark on the details of the

validation procedure in Appendix A.2.

3.2 Fraction of Voters Preferring an Attribute

Another possible quantity of interest pertains to the fraction of voters preferring attribute A = a

over A = a′. To construct a meaningful definition of this quantity of interest, we first need to define

preferences over individual attributes (as opposed to profiles as a whole), which has not previously

been necessary. Drawing on Section 2.1’s definition of preferences, we say that a voter prefers

attribute A = a to A = a′ if and only if the average rank for a is less than the average rank for

a′.8 It is then straightforward that, assuming A to be uniform over the set of all possible attribute

8More generally, denote a profile by a length-L vector p = [d1, ..., dL] such that dl ∈ {1, ..., Dl}. Let r(p) ∈
{1, ..., R} denote the rank of profile p, where R =

∏L
l=1 Dl. Define the average rank for the lth attribute dl = f

as Sl(f) ≡ Dl

R

∑D1

d1=1 · · ·
∑Dl−1

dl−1=1

∑Dl+1

dl+1=1 · · ·
∑DL

dL=1 r([d1, ..., f, ..., dL]). Then, f % f ′ for attribute l iff Sl(f) ≤
Sl(f ′).
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combinations, voter i prefers attribute A = a over A = a′ if and only if EA[Yi([aBC], [a′B′C ′])] >

0.5, which follows from the fact that SA
i (a) < SA

i (a′) iff EA[Yi([aBC], [a′B′C ′])] > 0.5.

Based on this definition, we can define as another possible quantity of interest, the fraction of

voters preferring A = a over A = a′:

EV [1{EA[Yi([aBC], [a′B′C ′])] > 0.5}] . (7)

Note that this quantity does not equal the probability of winning defined in equation (5) since

the order of the two expectations is reversed. Instead, the quantity amounts to first classifying all

voters into those (for example) preferring a female candidate and those preferring a male candidate,

and then calculating the proportion of the female preferers.

The distinction between the two quantities—the probability of winning and the fraction of

voters preferring an attribute—is subtle but important, since equation (7) does not generally

equal the probability of a female candidate winning a majority election against a male candidate,

which may be of more interest to election scholars. In fact, it is unlikely that the fraction of voters

preferring attribute A = a over A = a′ is very relevant to empirical elections scholars because it

tells us little about the importance of that attribute for actual voting behavior in multi-attribute

contexts. As our handedness example above illustrated, it may well be that the vast majority

of voters prefer a right-handed candidate, but this attribute would almost never be relevant for

determining any voter’s vote (so the AMCEs of that attribute or its effect on the probability of

winning would be nearly zero).

This limited relevance applies also, perhaps especially, to a restricted version of this quantity

of interest that has been proposed in other work. Specifically, Abramson, Koçak and Magazinnik

(2019) propose defining an individual attribute preference for attribute A = a over A = a′ as

1{EA[Yi([aBC], [a′BC])] > 0.5}, thereby considering only ceteris paribus comparisons (i.e. B and

C are equal across the two profiles). Under this definition, the fraction of voters preferring A = a

over A = a′ simplifies to

EV [1{EA[Yi([aBC], [a′BC])] > 0.5}] . (8)

This definition differs from that provided in equation (7) in that it is a function of preference

relations only between pairs of profiles identical on all but one attribute. For example, consider
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the profile [111] in the case of three binary attributes. This version only allows the profile to be

compared against three out of the other seven possible profiles, i.e., [011], [101] and [110], which are

each identical to the original profile in all but one attribute. Preferences over other profiles—[100],

[010], [001] and [000]—are ignored.9

In other words, this restricted definition of individual attribute preferences leaves a large num-

ber of profile pairs incomparable, which in our view makes it unsuitable for analyzing conjoint

survey experiments, where the goal is precisely to analyze preferences about profiles that vary

across multiple attributes simultaneously. To see the gravity of the problem, consider our toy ex-

ample of a conjoint experiment with three binary attributes. Assuming the uniform independent

randomization of the attributes (and disregarding the exact ties), the probability that a randomly

generated pair results in a ceteris paribus comparison in which all attributes are equal save one is

3/7 ' .43. That is, the expected proportion of conjoint tasks that provide any information about

respondents’ preferences per this restricted definition is only 43%, with the remaining 57% of the

data contributing nothing. Moreover, for a given attribute, only one out of seven comparisons ('

14%) is considered informative about respondents’ preferences. The signal-to-noise ratio continues

to decline rapidly as the number of attributes increases to more realistic settings, rendering most

of the actual choice data “uninformative” by definition. With ten binary attributes, for example,

only 10 out of 1023 pairs (≤ 1%) are ceteris paribus and thus informative about respondents’

preferences per this restricted definition. In contrast, all possible comparisons contribute useful

information about respondents’ preferences according to equation (7)’s proposed definition.

Defining preferences based exclusively on ceteris paribus comparisons is not only problematic

for comparing profiles, but also for understanding individual attribute preferences. To illustrate,

consider a voter choosing a male white Democratic candidate (e.g., [000]) over both a female white

Republican candidate ([101]) and a male black Republican candidate ([011]). According to the

restricted definition of individual preferences, these two choice outcomes contain no information

about the voter’s preference between a Democratic candidate and a Republican, since neither

9The limitation of focusing on ceteris paribus comparisons is not readily apparent in the framework Abramson,
Koçak and Magazinnik (2019) initially uses to prove its main results, since the framework rules out any interaction
between attributes by construction. Under the no-interaction assumption, if ∃b, c such that [1bc] � [0bc] then
[1b′c′] � [0b′c′] for any b′ ∈ {0, 1} and c′ ∈ {0, 1}, making consideration of all but one ceteris paribus comparison per
attribute redundant. Although analytically convenient, this no-interaction assumption is unrealistically restrictive
as a framework for voter preferences and therefore of limited utility to empirical election scholars.
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is a ceteris paribus comparison with respect to party affiliation. In the real world, virtually no

elections are about ceteris paribus contests between candidates; no two candidates for office differ

in just one way. Hence, based on Abramson, Koçak and Magazinnik (2019)’s restricted definition

of individual attribute preferences, individual votes in almost all actual elections reveal nothing

about the voters’ preferences about candidates attributes such as partisanship, race, or gender—an

unacceptable starting point for most elections scholars.

Accordingly, if researchers remain interested in analyzing the fraction of voters who prefer a

particular attribute, we propose the quantity of interest defined by equation (7) over the restricted

version defined by equation (8). Nonetheless, estimating the fraction of voters who prefer an at-

tribute, whether defined by equation (7) or (8), presents even greater challenges than estimating

the probabilities of winning, since it requires explicitly incorporating the heterogeneity of prefer-

ences among the voters in the analysis. That is, one would first need a good predictive model for

the inner expectation term of the equation, EA[Yi([aBC], [a′B′C ′])], which equals the average vote

share of a profile containing A = a versus another profile containing A = a′ for a specific voter i.

Except in the unlikely event of the target population of voters being perfectly homogeneous or of

no interactions between attributes, such a model would require (probably numerous) parameters

representing how the effect of each individual attribute varied as a function of observed respondent

characteristics (e.g., coefficients on interaction terms), in addition to the cross-attribute interaction

terms already required for modelling the potential outcomes. The modeling exercise thus involves

an even higher-dimensional prediction problem than the case of the probability of winning.10 In

fact, researchers interested only in the fraction of voters who prefer candidates with a particular

attribute (e.g. female) over another (e.g. male) could forgo a conjoint design altogether and

instead ask directly whether respondents prefer a female candidate or a male candidate without

mentioning other attributes. This would obviously ignore the important multi-attribute nature of

elections.

10Although hierarchical Bayes approaches (e.g. Lenk et al., 1996) are often used in marketing to model individual
preference heterogeneity, accurate prediction of choice behavior for each individual respondent is still regarded as
a challenging inferential problem for these models.
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3.3 Revisiting the AMCE

The above discussion of alternative quantities of interest brings us back to the third desirable

property of the AMCE: empirical tractability. As Hainmueller, Hopkins and Yamamoto (2014)

details, by virtue of the attribute randomization, the AMCE can be nonparametrically identified

via a simple difference in means, much like a standard experiment with a single treatment. This is

possible because the AMCE is a linear function of the potential outcomes, unlike the probability

of winning or the fraction of voters preferring an attribute.

Indeed, this discussion should be familiar to those familiar with causal inference methodology

and the Average Treatment Effect (ATE) as a causal estimand. All of the quantities of interest

discussed so far can be viewed as causal quantities, in that they involve counterfactual comparisons

between possible combinations of attributes or treatment components (Hainmueller, Hopkins and

Yamamoto, 2014). When making inferences about a causal quantity, one faces the problem of

identifying counterfactual comparisons never directly observed in the data. As is well known,

treatment randomization solves this problem for common causal estimands such as the ATE,

allowing for valid inference without further modeling or distributional assumptions. Less well

known, however, is the fact that randomization solves the identification problem only for a certain

class of causal estimands. Fortunately, this class of estimands includes causal effects such as the

ATE. But it excludes others, such as the median treatment effect, which represents the effect of

the treatment on an individual unit at the median of the treatment effect distribution.

This is analogous to the relationship between the AMCE and alternative aggregations of treat-

ment effects. Whereas the AMCE is nonparametrically identified by the observed difference in

means by virtue of randomly assigning treatments, quantities involving non-linear mappings such

as the probability of winning require additional assumptions and/or more complicated model-

ing techniques. No wonder recent empirical applications of conjoint experiments have gravitated

towards AMCEs: they offer critical advantages over potential alternatives.

Have scholars avoided randomized experiments because the ATE is not directly informative

about whether the treatment effect is positive for a majority of units? No. Rather, scholars in

various fields have focused on the ATE because it can be identified with minimal assumptions and

provides a useful, interpretable summary of causal effects. In that regard, the fact that the AMCE

combines both preference directionality and intensity is a feature, not a bug. If a small number of
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people always support a candidate with a specific attribute a, they may overwhelm the majority

of respondents who slightly prefer its inverse, a′. This is true not only of the AMCE but also of

the ATE; if a small number of lives are saved by taking a medication, that may overwhelm the

temporary, negative side-effects that a larger number of people experience on any measure of long-

term health. Like the ATE, the AMCE is an average, and so necessarily combines directionality

and intensity. This is fitting in many political applications: in many cases, a minority of people

with intense preferences over a certain attribute can drive its electoral significance. And this is

not merely a rhetorical point because; as illustrated above, the AMCE identifies the difference in

the expected vote shares.

4 Practical Recommendations

Our analysis demonstrates that the AMCE recovers a meaningful quantity of interest for elections

scholars. Our discussion also uncovers nuances in the interpretation of the AMCE and raises

cautions against possible misinterpretations. Here, we provide guidance on what type of language

applied researchers can use to summarize their empirical findings based on AMCEs.

There are at least two straightforward ways to describe AMCE estimates. First, consider the

generic case in which respondents choose between profiles (e.g. candidates, products, etc.) in a

forced-choice design. Here, the AMCE can be described as the effect on the expected probability of

preferring or choosing the profile when an attribute changes from one value to another (averaging

over the randomization distribution of the profiles included in the conjoint). So, for example,

one could say: “Changing the age of the candidate from young to old increases the probability of

choosing the candidate profile by δ percentage points.”

Second, consider the electoral case in which the conjoint involves a choice between candidates.

Here, the AMCE can also be interpreted as the effect on the expected vote share of the candidate

when an attribute changes from one value to another. So for example one could state: “Changing

the age of the candidate from young to old increases the expected vote share of the candidate

by δ percentage points.” Thus, AMCEs in electoral conjoints allow applied researchers to make

succinct empirical statements about a core quantities of interest.

Certainly, the AMCE involves nuances which researchers should know before applying the
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methodology. In particular, the difference in the expected vote share here specifically refers to the

difference in the vote share that any young candidate would obtain on average against an oppo-

nent versus the vote share that any old candidate would obtain on average against an opponent,

where the opponent is randomly drawn from the randomization distribution of the attributes (see

Section 2.2). This language works similarly if there are multiple profiles.

Needless to say, the usual caveats about interpreting survey experiments apply: one needs

to exercise caution when the goal is extrapolating empirical findings from survey experiments to

behavioral outcomes in actual elections (but see Hainmueller, Hangartner and Yamamoto, 2015;

Auerbach and Thachil, 2018). Additionally, researchers should remember that the AMCE averages

the effect of an attribute over two different distributions: the randomization distribution of the

other attributes and the distribution of respondents. The sampling strategy and the experimental

design should therefore be informed by the target distributions (i.e., A and V defined in Section 2.4)

about which researchers want to make inferences (Hainmueller, Hopkins and Yamamoto, 2014;

de la Cuesta, Egami and Imai, 2019). In addition, subgroup analysis can be helpful to examine

how the AMCEs depend on particular subsets of respondents or choices of attribute distributions

(see Bansak et al., forthcoming, for design advice).

5 Conclusion

We employed a general framework for analyzing voter preferences in electoral conjoint experiments

with multiple candidate/party attributes to study the microfoundations of the AMCE. We showed

that as long as voters have preference rankings over the set of multi-attribute candidate/party

profiles and vote for their preferred profiles, the AMCE directly recovers a core quantity of interest

to election scholars: the effects of candidate or party attributes on expected vote shares in elections

that mirror the conjoint design. Importantly, this crucial property of the AMCE holds regardless

of the structure of voter preferences or the electoral formulae which map votes into seats. In

addition, we explored other possible quantities of interest in the context of conjoint experiments

and discussed possible estimation strategies. This exercise further demonstrates the theoretical and

practical advantages of the AMCE. We also provided practical guidance on interpreting AMCEs

for researchers applying conjoint experiments.
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Our study has several implications. First, our results highlight the essential role of the AMCE

for analyzing elections using conjoint experiments. AMCEs—under general conditions—identify

the effects of changes in attributes on candidates’ expected vote shares. And as our literature

review has shown, vote shares are the central outcome of interest for much of the literature on

elections. The bottom line for applied scholars is simple: if one is interested in effects of candidate

or party attributes on vote shares, the AMCE is a fitting tool. Not only do AMCEs identify the

effects on vote shares under general conditions, they are also easy to estimate and do not rely on

arbitrary functional form assumptions.

Second, by going beyond AMCEs, our study highlights that conjoint experiments can also

be informative about other, less widely used causal quantities. In particular, we have defined

several estimands that capture the effects of changes in attributes on the probability of winning

and sketched procedures for their estimation. This revealed that it is important to precisely define

what is being compared when considering relative probabilities of winning. Also, such estimation

requires additional modeling assumptions beyond those guaranteed by the randomization. We

contrasted this quantity with the fraction of voters who prefer a specific attribute, showing how

the latter is rarely informative about vote choice in multi-attribute elections while causing more

challenges for estimation. Thanks to its ease-of-use and clear interpretability, the AMCE has

many advantages over these alternatives.

Third, our analysis of the AMCE and alternative quantities of interest refutes the concerns

raised by a recent critique of conjoint experiments (Abramson, Koçak and Magazinnik, 2019),

which suggested that AMCEs are largely uninformative with respect to questions of interest to

political scientists. On the contrary, our results demonstrate that AMCEs are in fact of funda-

mental importance for scholarship on elections. To be fair, Abramson, Koçak and Magazinnik

(2019) are correct that AMCEs will not necessarily correspond to the fraction of voters that prefer

an attribute A = a over A = a′ when considering only that attribute in isolation. Should such

a question be of interest, one can simply directly ask respondents about their preferences for A;

there is no reason to use a tool for understanding multi-dimensional choices on a uni-dimensional

problem. That said, it is important to remember that the fraction of voters that prefer a specific

attribute is typically not useful for election scholars because it ignores the multi-attribute nature

of elections and is therefore largely uninformative about the effect of that attribute on the election

24

Electronic copy available at: https://ssrn.com/abstract=3588941



outcome. Put differently, just because many voters might prefer a specific attribute in isolation

does not mean that this attribute will have any effect on vote shares or the probability of win-

ning since voting might be mainly driven by more important attributes. On the other hand, the

AMCE addresses what often interests election scholars by revealing how an attribute will affect

vote shares averaging across candidates with many possible combinations of other attributes. In

sum, Abramson, Koçak and Magazinnik not only ask the ill-posed question of whether one esti-

mator recovers a quantity it was not designed for, but also do so for a quantity rarely informative

about actual vote choices in multi-attribute elections.

Finally, our study points to some fruitful avenues for future research. We have proposed pro-

cedures for estimating alternative quantities of interest related to candidates’/parties’ probability

of winning elections/seats that may serve as a starting point for future modeling. With additional

assumptions, such approaches could be used to get added mileage out of conjoint data.
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Appendix

A.1 Details of the Literature Review on Quantities of Interest in Elec-

toral Research

In this appendix, we provide more details of the procedure we used in our review of the empirical

electoral literature.

The four journals we collected articles from are The American Political Science Review, The

American Journal of Political Science, Electoral Studies, and Political Behavior. Our initial pa-

rameters identified 279 published articles on voting, and 111 of those included an estimate of

the effects of candidate or party characteristics on some electorally relevant outcome. We next

removed articles which did not evaluate vote choice specifically and also removed those articles

which used a conjoint design, as one of the primary goals of this paper is precisely to clarify the

implicit quantity of interest in electoral conjoint experiments.

To identify articles that use either aggregate vote shares or their individual-level analogues as

a key outcome, we grouped articles whose primary outcome was aggregate vote shares with those

that considered their individual-level analog, changes in the individual-level probability of voter

support for a party or candidate. We then separately identified articles whose primary outcome

was the probability of a candidate/party victory or the number of seats won in a legislature.

A.2 Details on the Estimation of the Probability of Winning

Due to the model dependence of the procedure for estimating the probability of winning described

in Section 3.1, validation of the final model is paramount. There is of course no reason to believe,

nor do we even need to assume, that the final fitted model perfectly represents the true underlying

data-generating process. After all, the purpose of these procedures is not to estimate model-specific

parameters that themselves are meant to represent particular estimands of interest. Instead,

the goal is to learn a model f̂ that produces good predictions such that f̂(a, b, c, a′, b′, c′) ≈

f(a, b, c, a′, b′, c′). Model validation and evaluation can thus proceed according to standard best

practices in machine learning and statistical learning theory, making use of performance metrics

that are a function of out-of-sample or cross-validation predictions and the corresponding true
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outcome values.

Given the focus on estimating the probability of winning, one’s first instinct might be to

simply compute the out-of-sample or cross-validation classification accuracy of M̂ . However, while

classification accuracy would be informative, it would be insufficient and potentially misleading in

terms of the usefulness of the model for predicting the majority-vote outcomes of matchups. For

instance, consider a profile matchup ([abc], [a′b′c′]) where the true average vote share is 0.55 (i.e.

55% of the population of interest would choose [abc] over [a′b′c′]). In this case, even if one had

perfectly modeled f and had data on this matchup for the entire population, the classification

accuracy of M̂ at the individual level would be 0.55. This is an underwhelming classification

accuracy, but it does not suggest a poorly trained model for our purposes; quite to the contrary,

a perfect model would exhibit a classification accuracy of 0.55 if applied to randomly sampled

voters’ evaluations of this matchup.

In other words, the focus on predicting the outcome of a matchup at the aggregate level

(i.e. which of two candidate profiles would win the majority of votes among a population of

interest) means that the classification accuracy of M̂ at the individual level (i.e. whether or not M̂

accurately predicts a randomly sampled individual’s vote {0, 1} for a particular matchup) is neither

of primary interest nor necessarily even indicative of the quality of the model f̂ . Since estimates of

M([ABC], [A′B′C ′]) must necessarily happen at some level of aggregation, validation/evaluation

of the model must also occur at some level of aggregation. Calibration analysis methods from

statistical and machine learning are well-suited for this purpose.

Calibration analysis is a method of assessing the reliability of predicted probabilities. In an

ideal world, one would have a perfectly specified and fitted model and hence its predicted prob-

abilities would equal the true probabilities. This is of course not possible in reality, but we may

still hope that the predicted probabilities closely approximate the true probabilities. However,

empirically assessing this at the individual level is impossible because underlying probabilities are

never truly observed. In addition, the true underlying vote share for any matchup ([abc], [a′b′c′])

is also unobserved given the dimensionality of the feature space and randomization of the at-

tributes. However, the reliability of a model’s predicted probabilities can still be (partly) assessed

by aggregating the data into bins.

Specifically, for each data point (i.e. each observed matchup evaluation), f̂ would be applied

2
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to formulate a cross-validated predicted probability, and those predicted probabilities would then

be binned into intervals (e.g. 20 intervals of length 0.05 from 0 to 1). Within each bin, the average

predicted probability would be computed and compared against the true fraction of 1’s in the

data points belonging to that bin. Predicted probability averages that are approximately equal

to the true fraction of 1’s in each bin would be evidence of a well-calibrated model. This would

then provide support, albeit not definitive, to the claim that f̂(A,B,C,A′, B′, C ′) is meaningfully

approximating EV [Yi([ABC], [A′B′C ′])], in which case it would then be possible to provide reliable

estimates of M([ABC], [A′B′C ′]).

Note also that if one’s focus is solely on predicting the ultimate election outcome in a particular

matchup, with no additional interest in accurately estimating the vote share, it need only be the

case that for any matchup whose vote share is above 0.5, the estimate of the vote share (i.e.

predicted probability) is also above 0.5. What that means is one does not necessarily need a

model that is calibrated along the entire [0, 1] interval. Instead, it would be sufficient to have,

for instance, a model’s whose calibration curve hits the identity line at 0.5 and is otherwise

monotonically increasing, which is a strictly easier condition for classification models to satisfy.

3

Electronic copy available at: https://ssrn.com/abstract=3588941


	Title Page
	1 Introduction
	2 Microfounding the AMCE
	2.1 Formalizing Preferences in Multi-Attribute Elections
	2.2 Defining the AMCE
	2.3 The AMCE and Preference Intensity
	2.4 The AMCE as the Effect on Vote Shares

	3 Beyond AMCEs: Alternative Quantities of Interest
	3.1 Probability of Winning
	3.2 Fraction of Voters Preferring an Attribute
	3.3 Revisiting the AMCE

	4 Practical Recommendations
	5 Conclusion
	A.1 Details of the Literature Review on Quantities of Interest in Electoral Research
	A.2 Details on the Estimation of the Probability of Winning


