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Abstract
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rationales. In legislative settings, ideological opposites may join together to oppose
moderate legislation in pursuit of antithetical goals. We introduce a scaling model that
accommodates ends against the middle voting and provide a novel estimation approach
that improves upon existing routines. We apply this method to voting data from the
United States Supreme Court and Congress and show it outperforms standard methods
in terms of both congruence with qualitative insights and model fit. We argue our pro-
posed method represents a superior default approach for generating one-dimensional
ideological estimates in many important settings.
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1 Introduction

Early in the 116th Congress, scholars began to notice an irregularity. Even after over 540

votes, the ideology estimates for several of the newest members of the Democratic cau-

cus seemed unusually inaccurate. As of this writing, for instance, Poole and Rosenthal’s

DW-NOMINATE identified Rep. Alexandria Ocasio-Cortez (D-NY) as one of the most con-

servative Democrats in the chamber (the 86th percentile, just to the left of the chamber

median) (Lewis et al. 2019). This contrasts strongly with Ocasio-Cortez’s wider reputation

as an extreme liberal. A member of the Democratic Socialists of America, Ocasio-Cortez

publicly championed liberal proposals such as Medicare for All and the Green New Deal.

Moreover, she is not alone in having unusual estimates. Three members of the so-called

“squad” (Reps. Ilhan Omar, Ayanna Pressley, and Rashida Tlaib) are estimated as being

on the conservative side of the Democratic caucus. Why do these members seem to vote in

ways so at odds with their public pronouncements?

In this paper, we show that the problem in this case—and in many more like it—is not

a mismatch of votes and rhetoric, but instead a flawed assumption embedded within scaling

methodologies used by political scientists. Standard models including NOMINATE (Poole

and Rosenthal 1985), item response models (Martin and Quinn 2002; Clinton, Jackman and

Rivers 2004), and optimal classification (Poole 2000) assume strict monotonicity of responses

in individuals’ latent traits. That is, they assume that as individuals become more liberal, for

any proposal they become more (or less) likely to support the proposal. If this assumption

holds, we should never (or rarely) observe instances where individuals at the ideological

ends vote together in opposition to moderates. If Occasio-Cortez votes more often with

Republicans than her Democratic colleagues, these models reason, it must be because she is

ideologically more similar to Republican members.

While a monotonicity1 assumption may often be appropriate, when the actual data gen-

erating process violates it (as it often does), it can lead to conclusions that are misleading or,

1In this context, monotonicity refers to the assumption that response functions are strictly
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as in the case of Rep. Ocasio-Cortez, just wrong. In this instance, the problem is that she

regularly voted against the majority of the Democratic party and with Republican members.

From public statements it is clear she does this because the proposals being considered are

not liberal enough, while Republicans oppose the same bills because they are not conservative

enough. While the differing motivation for these votes are clear to congressional observers,

the resulting voting patterns are observationally equivalent to measurement models and ex-

isting methods are not equipped to handle this ambiguity.

In this paper, we introduce a modification to traditional item response theoretic (IRT)

models that allows for this “ends against the middle” behavior while recovering near identical

estimates as standard IRT models when such behavior is absent. It allows that the same

observed voting behavior may be motivated by opposite ideological instincts. The method,

the generalized graded unfolding model (GGUM), was first proposed by Roberts, Donoghue

and Laughlin (2000) to accommodate moderate survey items. However, it has not previously

appeared in the political science literature or been applied to voting records. As illustrated

in Figure 1, by allowing for this ambiguity of motivations, the proposed model is able to

easily identify Ocasio-Cortez and other members of “the squad” as by far the most liberal

members of Congress, while providing very similar ideological estimates for other members.

In the next section, we contextualize the GGUM within the constellation of existing

methods and motivate its use. We then present the GGUM and provide a novel estima-

tion method for GGUM parameters, Metropolis-coupled Markov chain Monte Carlo, which

outperforms existing routines in terms of accuracy and convergence to the proper posterior.

We then test the robustness of the method via simulation. We show that GGUM gives

essentially identical estimates as standard scaling methods in the absence of ends against

the middle voting, suggesting that GGUM is a weakly dominant approach. We then address

the potential (but incorrect) criticism that the GGUM is simply picking up on a second

durable ideological dimension. We show that in the presence of additional dimensions and

increasing or decreasing as a function of member ideology.
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Figure 1: Ideology of Members of the 116th House of Representatives as estimated by the
GGUM vs. first dimension DW-NOMINATE scores (Lewis et al. 2019).
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monotonic response functions, GGUM still returns nearly identical ideological estimates as

standard scaling methods. Finally, we apply GGUM to voting data from the U.S. Supreme

Court and Congress and show that it outperforms standard methods in terms of substantive

insights about votes and elites and, to a lesser extent, in terms of model fit. We conclude with

a discussion of future directions for this research as well as the substantive interpretation of

the resulting ideological estimates.

2 Ends against the middle

For over four decades, political methodologists have worked to accurately measure the ide-

ological position of voters, legislators, and other political elites. The broad goal is to take

a large amount of data (e.g. roll calls) and reduce it to a low dimensional representation of

some latent concept. Typically, and especially for elites, the focus is measuring ideology.

After gaining wide acceptance in the 1990s and 2000s, this work expanded to accom-

modate dynamics (Martin and Quinn 2002; Bailey 2007), ordered responses (Treier and

Jackman 2008), nominal data (Goplerud 2019), and bridging institutions (Shor and Mc-
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Carty 2011) and voters (Caughey and Warshaw 2015). Methodologically, approaches span

the spectrum of statistical philosophies including least squares (Poole 1984a), Bayesian in-

ference (Jackman 2001), parametric (Poole and Rosenthal 1985) and non-parametric models

(Poole 2000; Peress 2012; Tahk 2018), and more (Imai, Lo and Olmsted 2016). As data

sources expanded, researchers incorporated more kinds of evidence including social media

activity (Barbará 2015), campaign giving (Bonica 2013), and word choice (Kim, Londregan

and Ratkovic Forthcoming; Lauderdale and Clark 2014).

This dizzying array of methods defies any strict categorization. However, there are still

important delineations between them (Armstrong et al. 2014). For our purposes the most

important are (1) models for continuous responses, categorical responses, and agreement

scores, and (2) dominance versus unfolding models.

2.1 A rough taxonomy of measurement models

First, methods can be grouped based on whether they expect data to be ratio, interval,

categorical, or nominal. Most political science data tends to be categorical, while many

models (e.g., factor analysis) assume interval data. A related distinction is whether the

data represents individual behavior or whether it represents similarities between individuals.

Nearly all of the methods discussed above assume the former, while the latter calls for an

approach such as multidimensional scaling (Bakker and Poole 2013).

A second difference is between dominance and unfolding models. Dominance models are

far more common in the literature. They assume that there is a strictly monotonic rela-

tionship between the latent trait and observed responses. Examples include factor analysis,

Guttman scaling (Guttman 1944), and the various forms of IRT models above. Figure 2a

provides an example of a monotonic response function common to dominance models for a

binary outcome. In this case, the probability of agreement always increases as respondents’

ideology measure increases. Thus, the least likely individuals to “disagree” are those at the

extreme right.
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Unfolding models date back at least to Coombs (1950) and instead assume that responses

reflect single-peaked (usually symmetric) preference functions. That is, facing any particular

stimuli, respondents prefer options that are “closer” to themselves in the latent space. A

common form of data that exhibits this feature is “rating scales,” where respondents are

asked to evaluate various politicians, parties, and groups on a 0-100 thermometer. Unfolding

models for ratings scales date back to Poole (1984b). While less common in political science,

unfolding models accurately capture the intuitions and assumptions behind spatial voting

(Enelow and Hinich 1984), wherein individuals prefer policy options that are closer to their

ideal point in policy space. Figure 2c shows an example of a response function consistent

with an unfolding model. In this case, it is individuals near zero who are most likely to

“agree” and individuals at the most extreme are expected to behave the same (“disagree”)

despite being dissimilar on the underlying trait.

One reason many scholars are unaware of the distinction between dominance and unfold-

ing models is that single-peaked preferences consistent with unfolding models actually result

in monotonic response functions consistent with dominance models in one important situa-

tion: when individuals with single-peaked preferences make a choice between two options.

A key example of when this equivalence holds is a member of Congress deciding between

a proposed policy change and the status quo.2 It is for this reason that standard models

of roll-call behavior that derive from both the unfolding (e.g., Poole and Rosenthal 1985)

and dominance (e.g., Jackman 2001) traditions arrive at similar estimates. However, the

direct link between single-peaked preferences and monotonic response functions holds only

when data result from paired comparisons as posited in classic spatial models of roll-call

voting. Under many alternative assumptions, single peaked preferences are not consistent

with monotonic response functions.

2See Clinton, Jackman and Rivers (2004) for a succinct proof of this equivalence in IRT

models.
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Figure 2: Moving from a monotonic response IRT model to the GGUM

(a) An example item response function for a tra-
ditional two parameter IRT model.
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(b) Expanding the response categories to include
agreement/disagreement from below
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(c) An example item response function for the
GGUM.
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2.2 An unfolding model for categorical responses

The unique feature of the GGUM is that it is an unfolding model designed for use with

categorical data. Further, GGUM assumes that the data represents individual behaviors

(viz. votes) rather than similarities. GGUM is a model that allows for “unfolding” that

is consistent with the spatial model but allows for categorical responses. It is, therefore,

potentially widely applicable across political science as it links the most common theory of

preference structure with the most common data type.

How is this accomplished? Roberts, Donoghue and Laughlin (2000) start with the key

insight that selecting “disagree” on a survey could be viewed as disagreeing from either
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end of the latent dimension. Thus, responses are expressive representations of how close

respondents feel to the stimuli. Each observable response category is broken down into two

subjective response categories. The probability of any observed response is the sum of the

two subjective responses.

This idea is illustrated in Figure 2. Figure 2a shows a traditional monotonic IRT re-

sponse function, where a higher position on the latent trait leads to a higher probability

of agreement. Figure 2b, however, shows how we can imagine there could be two reasons

for disagreement. That is, there are two unobserved behaviors (“Disagree from above” and

“Disagree from below”) that are driven by symmetric but opposite motivations. Finally,

Figure 2c shows how these four subjective categories are combined into two non-monotonic

response functions for the observed objective response functions. In a setting with ends

against the middle voting, our goal is to model this response function since we only observe

voting behavior and not individuals’ underlying motivations.3

When would such a model be appropriate? In surveys, GGUM might be useful in the

presence of moderate items (Cao, Drasgow and Cho 2015) where two-sided disagreement can

occur. However, we believe that where the method will be most useful is in the analysis of

elite behavior, and below we include two examples.

There are two situations when the GGUM measurement model will be most appropriate.

The first is illustrated by Supreme Court decision making where justices are not always

presented with a binary choice, but instead can select among several options to either join

opinions, join dissents, concur, or write their own opinions. Indeed, it is widely understood

that votes relate only to the disposition of the lower court ruling while Justices may be more

interested in doctrine.

For example, in 2014 the US Supreme Court issued a ruling in Paroline v. United States,4

3As we show below, in the absence of ends against the middle voting, GGUM can still

estimate a monotonic response function as depicted in Figure 2a.
4Paroline v. United States, 572 U.S. 434 (2014)
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a case revolving around the conviction of Doyle Paroline for possession of child pornography.

A federal statute allows victims of child pornography to seek restitution from those convicted

of creating, distributing, or possessing their images. Two images possessed by Paroline were

of a minor, pseudonymously called Amy. She sought full restitution from Paroline for lost

wages and counseling costs, while he argued that he could not be liable for all of her harm

because others also possessed and distributed the images.

When faced with the question of how much of Amy’s restitution Paroline should pay,

Justice Kennedy delivered the opinion of the majority of the Court that took a compro-

mise position: that offenders should share the burden of restitution and Amy should only

recover those losses from Paroline proximately caused by his own conduct. This elicited a

dissent from both sides of the Court—one penned by Justice Sotomayor, among the Court’s

most liberal justices, and another by Chief Justice Roberts joined by Justices Thomas and

Scalia. Justice Sotomayor would have Paroline take responsibility for all of Amy’s harm,

while Roberts and company would have him bear no burden at all. As this example illus-

trates, in many instances the coalition of justices can be ideologically disjoint such that the

same behavior (dissent) may result from ideologically opposed reasons. Indeed, roughly one

quarter (0.246) of the cases we study below exhibit such discontinuous coalitions.5

Stepping back, the GGUM model is appropriate here because we have a single proposed

legal doctrine being advocated by the majority. Justices at both ideological extremes may

oppose this new doctrine on the grounds that it is too ideologically dissimilar from their

own views; and in this case they can express that opposition in the form of written dissents

providing distinct legal reasoning. This general dynamic can be visualized in Figure 2b

where we can get symmetric disagreement from above and below. However, when observing

only whether or not they dissent or agree with the majority opinion – when we collapse the

5In calculating the proportion of cases with discontinuous coalitions, we counted only

those where a voting coalition contained the most extreme justices on both sides of the

left-right ordering of justices according to Martin-Quinn scores.
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four subjective categories into the two objective categories – we end up with non-monotonic

response functions as shown in Figure 2c.

The second motivation for GGUM is illustrated by the US House of Representatives.

Here, GGUM may seem unneeded given the discussion above about the strong link between

dominance and unfolding models in legislative voting. However, recent history suggests

that members do not always vote in ways concomitant with monotonic response functions

(c.f., Kirkland and Slapin 2019). That is, members do not seem to be simply comparing

the status quo and the proposal before them. Instead, members—especially ideologically

extreme members—may refuse to support bills that move the status quo in their direction

because the proposal is still “too far” from their ideal point (Gilmour 1995).

For instance, in February 2019 the House voted on a conference bill to end the partial

government shutdown. Republicans opposed the bill on the grounds that it did not include

funding for the border wall. Liberal Democrats, however, opposed the bill on the grounds

that it did not sufficiently reduce funding for border detention facilities (McPherson 2019).6

In both cases, the reasoning is that the proposed bill was not sufficiently proximate to

members’ preferences. Thus, although we do not explicitly have more than two options to

support as in the Supreme Court, we again have a case where two subjective motivations

(opposition from the left and from the right) lead to identical observed behaviors (voting

against the bill). This and other examples suggest that the monotonic assumptions embedded

within scaling methods may be inappropriate for understanding some behavior in Congress.7

6Importantly this behavior is not limited to Democrats. For instance, in discussing the

Republican bill to replace the Affordable Care Act in 2017, Rep. Andy Biggs (R-AZ) ex-

plained that he opposed the bill (thus joining every Democrat) because it fell short of full

repeal (Biggs 2019).
7One could also amend traditional methods by allowing for multiple cutpoints; however,

existing attempts at multiple cutpoint models either cannot scale all legislators together

or retain the monotonicity assumption. McCarty, Poole and Rosenthal (2001), for instance,
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We return to these examples after presenting the model and estimation method.

3 The Generalized Graded Unfolding Model

GGUM is itself an extension of the general partial credit model (GPCM) (Muraki 1992;

Bailey, Strezhnev and Voeten 2017), which extends the dichotomous IRT models for cate-

gorical responses where the order is not known a priori. For voter i ∈ {1, . . . , N} on vote

j ∈ {1, . . . , J}, let k ∈ {0, . . . , Kj − 1} indicate the choice where Kj is the number of

choices available for vote j. We denote the probability of i choosing option k for item j as

P (yij = k|θi) = Pjk(θi). Then let the probability of choosing option k over option k − 1 be

Pjk|j,k−1(θi) =
Pjk(θi)

Pjk(θi) + Pjk−1(θi)

This relative probability is modeled using the standard IRT logistic response function, an

example of which is shown in Figure 2a.

Pjk|j,k−1(θi) =
exp [θi − bjk]

1 + exp [θi − bjk]
(1)

To get to the GGUM model, we first add a “discrimination” parameter that indicates how

much information the individual vote has about the latent trait such that the numerator of

Equation 1 is exp[ai(θi− bjk)].8 This can be re-parameterized to include option thresholds τ

explore two approaches. The first scales the two parties separately using optimal classification

so that we lose the ability to scale all actors together. The second is a two-step procedure.

First, a one-dimensional OC model is used to order legislators. Second, holding that ordering

constant, a separate cutpoint for each party is estimated. However, this approach retains

the monotonicity assumption when ordering the legislators in the first stage.
8Note that if there are only two options, this reduces exactly to the logistic version of the

standard IRT model in the literature.
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such that the numerator becomes exp[αi(θi−δjk)−τjk], which is identified by setting τj0 = 0

and
∑Kj

k=1 τjk = 0. The final steps involve solving for Pjk(θi) for all k and normalizing such

that the probabilities sum to one. At this point, we also combine the probabilities for the

observationally equivalent categories by assuming that for each τjk parameter in the model

there exists an equivalent subjective response corresponding with −τjk. Substantively, this

assumption means we assume preferences to be symmetric and single peaked.

These last steps involve some tedious algebra as explicated in Roberts, Donoghue and

Laughlin (2000), but the result is:

Pjk(θi) =
exp(αj [k(θi − δj)−

∑k
m=0 τjm]) + exp(αj [(2K − k − 1)(θi − δj)−

∑k
m=0 τjm])∑K−1

l=0 [exp(αj [l(θi − δj)−
∑l

m=0 τjm]) + exp(αj [(2K − l − 1)(θi − δj)−
∑l

m=0 τjm])]
. (2)

While unwieldy, this equation is actually a modest modification of the GPCM IRT model to

allow for the “folding” of various subjective options as shown in Figure 2. The discrimination

parameter (αj) represents how well the item reveals information about the latent trait, similar

to a factor loading. The ability parameter (θj) is the individual’s position on the latent

trait (i.e., their ideology). Finally, the δ and τ parameters affect where in the latent space

an individual will transition between the various response options. Appendix A provides

additional discussion on how to interpret each parameter.

With this equation, the likelihood for a set of responses Y is

L(Y) =
∏
i

∏
j

∑
k

Pjk(θi)
I(yij=k).

Note that the summation here is over all possible responses to item j. Roberts, Donoghue

and Laughlin (2000) outlines a procedure whereby item parameters are estimated using a

marginal maximum likelihood (MML) approach and the θ parameters are then calculated

by an expected a posteriori (EAP) estimator. de la Torre, Stark and Chernyshenko (2006)

provides a Bayesian approach to estimation via Markov chain Monte Carlo (MCMC).

However, there are a few aspects to the surface of the likelihood (and posterior) that make

parameter estimation difficult. First, the construction of the model nearly ensures that the
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likelihood will be multi-modal. The model is designed, after all, to reflect the fact that the

same behavior (e.g., voting against the bill) can be evidence of two underlying states of the

world (e.g., being extremely conservative or extremely liberal). Example profile likelihoods

are shown in Appendix B.

Second, like many IRT models, the GGUM is subject to reflective invariance; the likeli-

hood of a set of responses Y given θ and δ vectors is equal to the the likelihood of Y given

vectors −δ and −θ (Bafumi et al. 2005). However, unlike standard IRT models, simply

restricting the sign of one (or even several) θ or δ parameters is not sufficient to shrink the

reflective mode and identify the model. Because the likelihood is so multimodal, constraining

a few parameters will not eliminate the reflective invariance.

The consequence of these two facts together mean that both maximum likelihood models

and traditional MCMC approaches struggle to fully characterize the likelihood/posterior

surface absent the imposition of many strong a priori constraints. Further, both are sensitive

to starting values and may focus on one mode—sometimes a reflective mode.

To handle these issues, we offer a new Metropolis coupled Markov chain Monte Carlo

(MC3) approach, and implement this algorithm in an R package. To begin, we follow de la

Torre, Stark and Chernyshenko (2006) in using the following priors:

P (θi) ∼ N (0, 1),

P (αj) ∼ Beta(να, ωα, aα, bα),

P (δj) ∼ Beta(νδ, ωδ, aδ, bδ),

P (τjk) ∼ Beta(ντ , ωτ , aτ , bτ ),

where Beta(ν, ω, a, b) is the four parameter Beta distribution with shape parameters ν and

ω, with limits a and b (rather than 0 and 1 as under the two parameter Beta distribution).

These priors have been shown to be extremely flexible in a number of settings allowing, for

instance, bimodal posteriors (Zeng 1997). However, the priors censor the allowed values of

the item parameters to be within the limits a to b. As discussed in Appendix C, researchers
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must take care that the prior hyperparameters are chosen so they do not bias the posterior

via censoring.

We utilize an MC3 algorithm (Gill 2008, 512–523; Geyer 1991) for drawing posterior

samples, and the complete algorithm is shown in Appendix C. In MC3 sampling, we use N

parallel chains at inverse “temperatures” β1 = 1 > β2 > . . . > βN > 0. Parameter updating

for each chain is done via Metropolis-Hastings steps, where new parameters are accepted

with some probability p that is a function of the current value and the proposed value (e.g.,

p
(
θ∗bi, θ

t−1
bi

)
). The “temperatures” modify this probability by making the proposed value

more likely to be accepted in chains with lower values of βb. Formally, the probability p of

accepting a proposed parameter value becomes pβb , so that chains become increasingly likely

to accept all proposals as β → 0.

The goal here is to have higher temperature chains that will more quickly explore the

posterior and therefore be more likely to move between the various modes in the posterior.

We then allow adjacent chains to “swap” states periodically as a Metropolis update. Since

only draws from the first “cold” chain are recorded for inference, the result is a sampler that

will simultaneously be able to efficiently sample from the posterior around local modes while

also being able to jump between modes that are far apart. Intuitively the idea is to use the

“warmer” chains to fully explore the space to create a somewhat elaborate proposal density

for a standard Metropolis-Hasting procedure.

We provide complete details in Appendix C. In Appendix D we compare our proposed

estimation methods with both the MML routine proposed in Roberts, Donoghue and Laugh-

lin (2000) and the the MCMC approach outlined in de la Torre, Stark and Chernyshenko

(2006). We find that the MC3 algorithm significantly reduces the root mean squared error

(RMSE) for key parameters in finite samples relative to the MML algorithm and avoids

becoming stuck in single modes as is common with the extant MCMC algorithm.

Most Bayesian IRT models rely on constraints placed on specific parameters to achieve

identification during the actual sampling process (see, e.g., implementations in the popular
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MCMCpack R package (Martin, Quinn and Park 2011)).We follow this procedure in part

by identifying the scale of the latent space via a standard normal prior on θ. For the

reasons discussed above, however, standard constraints will not prevent an MCMC or MC3

sampler from visiting reflective modes. To avoid this problem, we instead allow the MC3

algorithm to sample the posterior without restriction, then impose identification constraints

post-processing.9 Since for this model the only source of invariance that remains is rotational

invariance, restricting the sign of one relatively extreme item location or respondent latent

trait parameter is sufficient to separate samples from the reflective mode. We provide an

example illustration in Appendix C.

4 Monotonic responses and multidimensionality

With the basic model and estimation approach in hand, we next consider two potential

drawbacks of our proposed method. First, we may be worried that while the GGUM performs

well when its assumptions are met, it may perform worse than standard methods in cases

where the usual monotonicity assumptions hold. Second, there is a concern that the GGUM

may be capturing the effects of a second broad dimension that is the true source of the

unusual voting patterns discussed above. In this section, we present simulation evidence

illustrating that these concerns are unfounded (additional details for these simulations are

provided in Appendix E).

First, we show that the GGUM performs well even when a standard IRT model is exactly

correct. In this case, we simulated responses from 100 individuals to 400 binary items

according to the model described in Clinton, Jackman and Rivers (2004) and estimated

using the R package MCMCpack (Martin, Quinn and Park 2011). We then estimate the

9This approach is available, for example, in the popular pscl R package (Jackman 2017).

For a mathematical proof that post-processing constraints are just as valid to break invari-

ance as a priori constraints, see Proposition 3.1 and Corollary 3.2 in Stephens (1997).
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Table 1: Fit statistics are near-identical for monotonic response functions. Comparison of
fit statistics between the Clinton-Jackman-Rivers monotonic IRT model and the GGUM for
responses simulated under the Clinton-Jackman-Rivers model. The respondent parameters
correlate at 0.997.

Model % Correct APRE AUC Brier

CJR 75.95 0.547 0.757 0.159
GGUM 75.98 0.547 0.759 0.160

GGUM from this data and compare the in-sample fit statistics in Table 1.10 The results

show that in the presence of monotonic response functions the GGUM recovers ideological

estimates that are nearly identical in terms of fit. Indeed, the θ estimates from the two

approaches are correlated at 0.997.

At first blush it seems odd that the GGUM does so well in the absence of non-monotonic

responses. However, for votes with strictly increasing response function the non-monotonic

gradient is estimated to occur outside of the support of the θ estimates meaning that the

non-monotonicity has no effect. We show an example of this in our applications below.

A second concern is that the tendency for some individuals to vote in unanticipated ways

may be a statistical artifact of a second dimension. To explore this possibility we simulate a

roll-call record with 100 respondents and 400 roll calls from a standard IRT model assuming

the presence of a second dimension. We then fit a GGUM model to this data as well as both

a one-dimensional and two-dimensional NOMINATE model. Figure 3 shows how the GGUM

estimates compare to the first dimension from both NOMINATE fits. As the figures show,

the estimates from both the GGUM and NOMINATE are essentially identical (correlations

are 0.99) indicating that the mere presence of a second dimension should not lead GGUM

10We measure APRE as
∑

j(Minority Vote−Classification Errors)j∑
j Minority Votej

(Armstrong et al. 2014, 200); it

measures the average increase in proportion classified correctly compared to the naive model

of assuming all members vote with the majority. AUC is the area under the curve of the true

positive rate plotted against the false positive rate. The Brier score (Brier 1950) is the mean

squared difference between predicted probability of a “one” vote and the observed vote.
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Figure 3: Estimate of GGUM’s ideology parameter vs. NOMINATE dimension one esti-
mates. The estimates for the one-dimensional NOMINATE model correlate at 0.992; the
estimates for the two-dimensional NOMINATE model correlate at 0.991.
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to confuse ends against the middle voting with two-dimensional voting.

To make this abundantly clear, this example proves that the intuition that GGUM

is simply picking up on a latent second dimension is false. We demonstrate this em-

pirically using data from the 92nd Senate in Appendix F. If there is no GGUM-like behavior

and member ideologies are two-dimensional, GGUM will simply measure the first dimension

in the same manner as a one-dimensional IRT model. Absent additional assumptions, it

is only when there is ends against the middle voting that GGUM diverges from standard

scaling techniques.11

In a narrower sense, however, it may be fair to characterize some ends against the middle

voting as being a function of multiple dimensions: In many cases elites will cite differing

concerns when explaining their votes. For instance, in the government shutdown vote dis-

cussed above, many conservatives opposed the compromise on the grounds that it provided

no funding for the border wall proposed by President Trump while many liberals opposed it

because it did not do enough to reduce the number of beds in immigration detention centers

(McPherson 2019). To the extent that these specific concerns represent different “dimen-

11One can of course construct instances where the GGUM would mistake a second dimen-

sion for ends against the middle voting. But the general argument that they are in some

way equivalent representations of the same data generating process is simply untrue.
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sions,” then it would be fair to say that the multidimensionality of the policy space leads to

GGUM-like voting.

However, in the broader sense more typical to the literature, ends against the middle

voting is not caused by a meaningful and durable second dimension that unites ideological

extreme Democrats and Republicans in a common cause. Critics arguing that GGUM is

simply an artifact of the second dimension must argue that Ocasio-Cortez and other liberal

Democrats actually vote with Republican because they are in agreement on some durable

dimension of policy conflict. Qualitatively, we have found virtually no evidence that there

is a hidden policy consensus between members of the opposite wings of the parties. While

it does happen on specific votes, most of the cases we have examined more closely resemble

the conference report vote where the same behavior was actually motivated by opposite

ideological instincts.

5 Applications

In this section, we provide two applications of GGUM to voting data. These examples serve

to illustrate the strengths of the method and highlight the substantive insights that the

model can provide. We begin by analyzing votes by justices in the United States Supreme

Court. We then turn to the study of voting in the House of Representatives. In both

examples, while we do note that GGUM offers superior model fit to the data, our primary

motivation remains offering superior substantive insights into the ideological motivations for

non-traditional voting coalitions.

5.1 The U.S. Supreme Court

We analyze all non-unanimous cases from the 1704 natural court, or the period beginning

when Justice Elena Kagan was sworn in and ending with the death of Justice Antonin Scalia.

We start by treating each case as a single “item” with two observable responses: voting for
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the outcome supported by the majority, or with the dissent. Under this coding scheme, we

have 203 non-unanimous cases. We obtained justice ideology and item parameters using our

MC3 algorithm for the GGUM, producing two recorded chains, each obtained by running

six parallel chains for 5,000 burn-in iterations and 25,000 recorded iterations.12

The results illustrate several advantages of the GGUM over monotonic IRT models (Clin-

ton, Jackman and Rivers 2004; Martin and Quinn 2002) commonly used to analyze Supreme

Court voting. Most importantly, we gain the ability to concisely explain disparate voting

coalitions. This is exemplified by Comptroller of the Treasury of Maryland v. Wynne,13 a

case revolving around the dormant Commerce Clause of the Constitution as applied to a

tax scheme by the state of Maryland. Here we observe a centrist majority opinion drawing

dissents from both ends of the ideological spectrum. The majority opinion ruled the tax

law to be unconstitutional as it violated existing jurisprudence by discriminating against

interstate commerce. Justices Antonin Scalia and Clarence Thomas authored a dissents on

the grounds that the dormant Commerce Clause does not exist, and therefore that the law

cannot be overridden on that basis. At the other end, Justice Ruth Bader Ginsburg authored

a separate dissent (joined by Justice Elena Kagan) that while the dormant Commerce Clause

does exist, it should not be interpreted so stringently as to disallow Maryland’s tax scheme.

Figure 4 shows the item response functions from both the Martin-Quinn model and

GGUM along with the estimated positions of the Justices. Due to the monotonicity assump-

12The chains were run at the inverse temperature schedule (1.00, 0.89, 0.79, 0.71, 0.63, 0.56);

these temperatures were determined using the optimal temperature finding algorithm from

Atchadé, Roberts and Rosenthal (2011), which is implemented and available for use in our

package. Convergence of all posteriors in this paper was assessed using the Gelman and

Rubin (1992) criteria and reached standard levels near 1.1 or below. Mixing in this model is

generally quite high and no other issues with the sampler were detected. Acceptance rates

for the Metropolis-Hastings steps are near 23%.
13575 U.S. , 135 S. Ct. 1787 (2015)
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Figure 4: Item response functions for Comptroller of the Treasury of Maryland v. Wynne
(2015). The probability of each justice’s actual response is marked and labeled with the
justice’s initials.

(a) The item response function under the mono-
tonic IRT model used in Martin and Quin (2002).
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(b) The item response function under the GGUM.
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tion, the standard IRT model treats this case as if it provides essentially no information

about justice ideology; voting in the case appears to be entirely non-ideological. This is

shown by the flat lines shown in Figure 4(a). On the other hand, the GGUM item response

function, shown in Figure 4(b), indicates that the model can learn from such disagreement

since the dissents are joined by two ideologically opposed but (somewhat) coherent groups.

That is, we are able to adequately account for these voting coalitions based on justices’

ideologies and provide more accurate predictions for the justices’ voting decisions.

However, for many decisions a monotonic item response function is completely appropri-

ate. This is exemplified by Arizona v. United States,14 where the majority coalition consisted

of Justices Roberts, Kennedy, Ginsburg, Breyer, and Sotomayor with partial dissents com-

ing from Justices Scalia, Thomas, and Alito. In this case, with a clear left-right divide on

the court, Figure 5 shows that both GGUM and Martin-Quinn scores result in very similar

monotonic response functions.

We can generalize this finding by comparing the in-sample fit of each model. Table 2

compares GGUM with standard IRT models. We first compare the models based on the

posterior standard deviation for the θ estimates. The results show a dramatic reduction in

14567 U.S. 387 (2012)
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Figure 5: Item response functions for Arizona v. United States (2012). The probability of
each justice’s actual response is marked and labeled with the justice’s initials.

(a) The item response function under the mono-
tonic IRT model used in Martin and Quin (2002).
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(b) The item response function under the GGUM.
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Table 2: Comparison of fit statistics and estimate precision between the Clinton-Jackman-
Rivers monotonic IRT model, the Martin-Quinn dynamic monotonic IRT model, and the
GGUM for cases from the 1704 natural court that are non-unanimous under a binary clas-
sification.

Model N Mean θ s.d. % Correct APRE AUC Brier

Clinton-Jackman-Rivers 203 0.255 86.97 0.600 0.844 0.089
Martin-Quinn 203 0.371 86.74 0.593 0.843 0.089
GGUM 203 0.215 87.35 0.612 0.848 0.087

uncertainty relative to both models, consistent with the notion that the model is able to

extract more information from votes such as Wynn involving disparate coalitions.

We also calculate standard fit statistics for the roll call literature described in Footnote 10.

By each metric, GGUM provides a modest improvement over standard methods, meaning

we get estimates that are both more precise and more accurate.15 Table 3 shows that this

difference is more pronounced when focusing only on cases with more than one written dissent

(N=45), where it is more likely that we will observe disparate coalitions. In summary, we

are able to simultaneously provide more accurate predictions for the Justices’ behavior while

simultaneously reducing our uncertainty about their ideological positions.

15Table 2 reports the in-sample fit statistics. In Appendix G we use a k-fold cross-validation

and find no evidence of strong overfitting.
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Table 3: Comparison of fit statistics between the Martin-Quinn dynamic monotonic IRT
model and the GGUM for cases from the 1704 natural court with more than one dissent.

Model N % Correct APRE AUC Brier

Martin-Quinn 45 86.78 0.656 0.857 0.095
GGUM 45 87.78 0.682 0.873 0.087

One further advantage of GGUM is its flexibility for handling multiple response options

where the order is not known. We illustrate this by changing how we handle the cases above

to include multiple response options: voting to support the majority opinion only, authoring

or joining a concurring opinion, or dissenting.16 Since for many cases there are concurring but

no dissenting opinions on the court, this increases the total number of non-unanimous cases

to 276. The average standard deviation for θ parameters from this model drops significantly

to only 0.189. Projecting back to the two-outcome coding (i.e., coding all concurrences as

supporting the majority opinion) the accuracy of the model improves to 87.47% for the cases

in Table 2. Thus, the model again simultaneously gives more accurate prediction and more

precise estimates.

Substantively, this richer representation of the data allows us to provide far more context

for unusual or difficult voting coalitions. For example, in Schuette v. Coalition to Defend

Affirmative Action,17 the people of Michigan amended their constitution to prohibit the

consideration of race in public hiring decisions and public university admission decisions. The

Court upheld this prohibition, but no reason garnered a majority of the justices’ support.

A plurality allowed the ban to stand, noting that the question was not whether considering

race in admissions decisions was permissible, but whether the Court could impose it over the

16The analysis presented here considers a three outcome model: dissenting, concurring

(both regular and special), or endorsing only the majority opinion. Using only special con-

currences as the second category and treating regular concurrences as joining the majority

results in 247 usable cases and similar results.
17572 U.S. 291 (2014)
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Figure 6: GGUM item response function for Schuette v. Coalition to Defend Affirmative
Action (2014).
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decision of the voters. Justices Thomas and Scalia specially concurred from the right, while

Justice Breyer specially concurred from the left, and Chief Justice Roberts both endorsed

the majority opinion and penned his own concurrence. Meanwhile, Justices Ginsburg and

Sotomayor dissented entirely. This is a complicated vote, but the item response function

shown in Figure 6 shows that the GGUM is able to capture much of this nuance.

5.2 The House of Representatives

In recent years, congressional observers have noted an increasing tendency for ideological

extremists to vote against party leadership but in line with their ideological opposites in

the opposing party. These defections from party orthodoxy are not due to secondary policy

concerns, but because they view the policy proposals as not going far enough. They are

disagreeing from the left (or right) as is allowed by the GGUM but not dominance models.18

18As we discuss in our conclusion, one can imagine strategies that make such expressive

behavior rational. However, our aim in this paper is not resolve the theoretical question

as to why this behavior is occurring but to appropriately handle measurement when it is a

possibility.
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The literature explaining this behavior remains unsettled. Kirkland and Slapin (2019)

argue that ideologically extreme members “rebel” against leadership as an electoral strategy

to mark themselves clearly as ideologues (see also Slapin et al. 2018). They specifically

hypothesize that ideological extremity should be paired with voting against party leadership,

but largely within the majority party. Other potential explanations are that members are

engaged in a dynamic strategy holding out for more favorable eventual policy outcomes.

Spirling and McLean (2007) offers a slightly differing argument in the context of Westminster

systems, arguing that majority-party rebels vote sincerely against policies they dislike while

the opposition party votes strategically against nearly all government proposals. This debate

cannot be settled here. However, if these questions are to be pursued, at the very least

we need a measurement technique that does not conflate expressive disagreement from the

ideological extremes with ideological moderation.

Whatever the origins, we show here the advantages of the GGUM over the popular NOM-

INATE technique, finding moderate improvements in fit statistics, but, more importantly,

better explaining roll calls with ends against the middle voting and subsequently retrieving

more reasonable estimates for Members with extreme ideology who sometimes vote with the

opposing party. We use all non-unanimous roll-call votes in the 116th House that occurred

before we ran our analysis; this includes the roll-call votes taken on and before June 28,

2019. We omit from analysis members who participated in less that 10% of these roll calls.

This results in 433 total “respondents” (House members) and 472 “items” (roll-call votes);

we used as observable response categories “Yea” votes and “Nay” votes. We obtained mem-

ber ideology and item parameters using our MC3 algorithm for the GGUM, producing two

recorded chains, each obtained by running six parallel chains for 5,000 burn-in iterations and

250,000 recorded iterations. The NOMINATE parameters and predicted probabilities were

estimated using the wnominate R package (Poole et al. 2011).19

19The estimation function from wnominate requires you specify a legislator who is con-

servative on each dimension. We used the Members who were most conservative on each
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The results of the GGUM analysis indicate that while ends against the middle votes

are not the modal case, they are nonetheless common. One example occurs about one

month into the 116th Congress, on a vote designed to prevent a(nother) partial government

shutdown. Near the end of the 115th Congress, the U.S. federal government entered into

a partial shutdown, with several government departments’ and agencies’ funding lapsing.

After conference, the House passed H.J. Res. 31 with a veto-proof majority (300-128), with

the vast majority of Democrats supporting the bill along with many moderate Republicans.

However, conservative Republicans, as well as some Democrats including Ocasio-Cortez,

Omar, Pressley, and Tlaib, opposed the bill. As discussed above, these two groups opposed

the bill for opposite reasons. The item response function from the GGUM is shown in

Figure 7a. As it clearly shows, GGUM captures the tendency of some members to vote in

objectively similar ways (in this case Nay) for subjectively different reasons (opposition from

the right and from the left).

Figure 7: Item response functions for two votes in the 116th House of Representatives. The
solid line indicates the item response function for this vote. The colored ticks indicate the
estimated ideology (θ) for all members where Yea votes are shown at the top and Nay votes
are shown at the bottom.
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(a) H.J. Res. 31, the funding bill passed Febru-
ary 14, 2019 to avoid a partial government shut-
down.
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(b) H.R. 2740, a bill funding several federal gov-
ernment departments and agencies for the 2020
fiscal year.

As another example, consider the item response function constructed for a bill to ap-

dimension according to the estimates available from Lewis et al. (2019): Andrew Biggs for

the first dimension and Josh Harder for the second.
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propriate funds for fiscal year 2020 shown in Figure 7b. For Republicans, the bill provided

too much domestic spending, representing “an irresponsible and unrealistic $176 billion in-

crease above our current spending caps” while “imposing cuts to our military” (Flores 2019).

However, for extreme Democrats, the bill was unsupportable because it gave the “military

industrial complex another $733B windfall” while not bringing “economic opportunities we

need” (Tlaib 2019). That is, members at both ideological extremes opposed the bill while

providing exactly opposite rationales.

The ability of the GGUM to capture ends against the middle behavior allows it to out-

perform NOMINATE across several metrics: proportion of votes classified correctly, APRE,

AUC, and Brier score. Table 4 provides these fit statistics for the full sample; moderate im-

provements across metric are seen for the GGUM above both the one- and two-dimensional

NOMINATE models.

Table 4: Comparison of fit statistics between the GGUM and NOMINATE for the 116th
House of Representatives.

Model Percent Correctly Classified APRE Brier AUC

GGUM 95.301 0.866 0.035 0.950
NOMINATE-1D 95.182 0.862 0.038 0.949
NOMINATE-2D 95.164 0.862 0.037 0.948

However, where GGUM is especially useful is in understanding the behavior of extremists.

For monotonic models like NOMINATE, when extremely conservative and liberal members

vote together, it can bias their ideology estimates making the ultra-liberal look more like

a moderate. However, under the GGUM, it may instead allow for those members to agree

because they are more extreme relative to their colleagues. Table 5 shows that GGUM is able

to outperform NOMINATE when evaluating fit statistics using only members of “the squad.”

GGUM does notably better than the both the the one and two-dimenstional NOMINATE

method on all metrics.

We can also look at the votes of conservative extremists whose record may also be seen

as difficult to classify when we observe ends against the middle voting (see also our analysis
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Table 5: Comparison of fit statistics between the GGUM and NOMINATE for the 116th
House of Representatives, considering members of “the Squad” only.

Model Percent Correctly Classified APRE Brier AUC

GGUM 98.114 0.981 0.013 0.965
NOMINATE-1D 96.523 0.964 0.031 0.938
NOMINATE-2D 96.995 0.969 0.023 0.945

Table 6: Comparison of fit statistics between the GGUM and NOMINATE for the 116th
House of Representatives, considering Freedom Caucus members only.

Model Percent Correctly Classified APRE Brier AUC

GGUM 90.875 0.824 0.068 0.899
NOMINATE-1D 90.395 0.815 0.077 0.894
NOMINATE-2D 88.970 0.788 0.085 0.884

of the 115th Congress in Appendix H). Specifically, Table 6 focuses on the Freedom Caucus

and shows again that GGUM provides superior model fit to either a one or two-dimensional

NOMINATE model.

We can go further by testing the hypothesis from Kirkland and Slapin (2019) that ends

against the middle voting is most likely on final passage votes, where the reputational gains

are largest. In Table 7, we re-calculate our fit statistics using only final passage votes. With

the full house membership, we see that the GGUM model outperforms both NOMINATE

models on all of the fit statistics. This pattern is particularly stark when looking at members

of the squad.

6 Conclusion

In this paper, we introduce the GGUM to the political science literature. The model ac-

counts for and leverages ends against the middle voting—disagreement from both sides of

issues—when estimating the ideology of political actors. This allows us not only to explain

discontinuous voting coalitions as more than noise, but also to obtain more accurate esti-

mates of actors’ ideology. We provide a novel estimation and identification strategy for the

26



Table 7: Comparison of fit statistics between the GGUM and NOMINATE for the 116th
House of Representatives, final passage votes only.

Model % Correct APRE Brier AUC

Full House

GGUM 97.883 0.950 0.016 0.979
NOMINATE-1D 97.752 0.947 0.019 0.978
NOMINATE-2D 97.499 0.941 0.020 0.975

The Squad Only

GGUM 95.531 0.952 0.028 0.822
NOMINATE-1D 88.827 0.880 0.108 0.500
NOMINATE-2D 88.827 0.880 0.071 0.544

model that outperforms existing routines as well as open-source software so researchers can

implement the GGUM in their own work.

We apply this method to the U.S. Supreme Court and U.S. Congress and show that it

offers improvements in predictive accuracy across multiple fit statistics. More importantly,

we gain the ability to treat court cases with discontinuous sets of dissenting justices, or roll-

call votes with nay votes from both sides of the aisle, as ideological rather than ignoring them

as uninformative. As a consequence we recover more accurate estimates of the ideological

position of extremists that are also consonant with their stated ideology. Further, since the

GGUM provides nearly identical estimates as IRT models now standard in the literature

in the absence of non-monotonic response functions, it appears to offer a weakly dominant

approach for estimating one-dimensional ideological estimates.

While the examples in this paper focus on political elites in the United States, we believe

that the method is applicable across a variety of settings. To begin, the model may allow

for the more flexible development of survey items where disagreement may come from “both

sides” of a latent dimension. The model may also be particularly useful in a comparative

context where both ends against the middle voting and informative abstentions are common

features of the roll-call record (Spirling and McLean 2007). Other application areas might

include voting in the United Nations (Bailey, Strezhnev and Voeten 2017) or co-sponsorship

decisions where members can choose from a menu of bills to support.
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Before closing, it is worth considering some of the more substantive theoretical and

empirical questions that the GGUM suggests in the American context. In our analysis of

Congress above we provide support for the theory in legislative politics proposed by Kirkland

and Slapin (2019), which was previously difficult to study given that measures of ideology

explicitly disallowed the kinds of disagreement from the extreme the theory predicts. While

these results illustrate the usefulness of the GGUM we believe that more work is needed to

understand this phenomenon. For instance, the GGUM-like item response functions appears

to be increasingly common in recent Congresses. What is driving this change and why is ends

against the middle voting more common for some legislators and not others? Moreover, little

is understood about the electoral consequence of this behavior or, taking an alternative view,

what suppresses it in some eras but not others. We believe that the GGUM may prompt

new theoretical developments of legislative and political behavior previously unexplored due

to the biases induced by ends against the middle voting in analyses reliant on dominance

models.

Finally, it is worth considering what the ideological estimates mean. After all, dominance

models are embedded within a clear theoretical framework. They are, in some sense, struc-

tural parameters based on standard theories of voting. In moving away from this theory,

one may be worried that the resulting measures are less valid indicators of the theoretical

concept of ideology. Our argument is that GGUM is not a measure of a different concept,

but a better measure of the same concept. When dominance models are appropriate, GGUM

does a fine job in recovering the same latent parameters as dominance models. However, in

situations where individuals are behaving more expressively, GGUM also works to uncover

their latent ideology based on standard spatial theories of politics. These are cases where

votes serve to signal approval of (or proximity to) a specific policy or opinion; these are cases

where spatial theories deviate from dominance models because actors are not just consid-

ering the status quo and proposal. Thus, we view GGUM not as a measure of a different

ideology, but as a more valid measure of the same ideology and to this end we have provided
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clear evidence (both empirical and qualitative) that where dominance and unfolding models

disagree, GGUM conforms more strongly with our substantive understanding of where actors

are in the ideological space and why they are behaving as we observe.
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A Interpreting GGUM Parameters

In the main text we briefly discuss the meaning of GGUM parameters. Here we give ad-

ditional information to help readers interpret the item parameters (we argue θ should be

interpreted as a measure of ideology just as in traditional scaling models). In each case, we

show an item response function (IRF), changing only one parameter and holding the others

constant.

Figure A1 shows the role played by the α parameter. As with traditional IRT models’

“discrimination” parameter, it indicates how much ideological information is contained in

each vote. The higher its value, the better we can predict votes based just on their ideology.

Figure A1: Effect of changing the α parameter. A GGUM IRF is plotted for three different
α values: 0.5, 1.0, and 2.0. For all three plots, δ = 0.0 and τ = (0,−1.0).
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(c) α = 2.0

Figure A2 shows the role of the δ parameter. It controls where the item is “centered,”

meaning individuals are most likely to support a proposal when θ = δ. For example, when

δ = −1 as in Figure A2a, individuals are most likely to support a proposal when θ = −1.

Figure A2: Effect of changing the δ parameter. A GGUM IRF is plotted for three different
δ values: −1.0, 0.0, and 1.0. For all three plots, α = 1.0 and τ = (0,−1.0).
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(c) δ = 1.0

In the case of binary variables, the τ parameter indicates how “spread out” around the
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δ parameter the response function will be. This is shown in Figure A3 where the general

shape of the IRF remains stable except that the “option 1” and “option 2” lines cross at

points further away from δ = 0 as τ2 increases (recall that τ1 is always constrained to 0 for

identification).

Figure A3: Effect of changing the τ parameter. A GGUM IRF is plotted for three different
τ vectors: (0,−0.5), (0,−1.0), and (0,−2.0). For all three plots, α = 1.0 and δ = 0.0.

 

0
0.

25
0.

5
0.

75
1

P
ij(k

)

−3 −2 −1 0 1 2 3
Ideology (θ)

Option 1 Option 2

(a) τ = (0,−0.5)

 

0
0.

25
0.

5
0.

75
1

P
ij(k

)

−3 −2 −1 0 1 2 3
Ideology (θ)

Option 1 Option 2

(b) τ = (0,−1.0)
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(c) τ = (0,−2.0)

B Example likelihood

Figure A4 shows the profile likelihood1 for two θi parameters from a simulated dataset of 500

respondents to 10 items with four options each. Note that these likelihoods are explicitly

multimodal. On the log-likelihood scale, this translates into steep modes that can be very far

apart in the parameter space making it difficult to estimate them accurately using standard

MLE techniques.

The respondent parameters were drawn from a standard normal distribution; the item

discrimination parameters were drawn from a four parameter Beta distribution with shape

parameters 1.5 and 1.5 and bounds 0.25 and 4.0; the item location parameters were drawn

from a four parameter Beta distribution with shape parameters 2.0 and 2.0 and bounds

-5.0 and 5.0; and the option threshold parameters were drawn from a four parameter Beta

distribution with shape parameters 2.0 and 2.0 and bounds -2.0 and 0.0. Each respondent’s

1Profile likelihoods mean that the likelihood is calculated using the actual true values for

all of the other parameters in the model.
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response to each item was then selected randomly according to the response probabilities

given by Equation 2 in the main text.

Figure A4: Bimodal profile likelihoods for θ parameters from a simulation, generated
holding all item parameters at their true value. The respondent parameters’ true values are
indicated by the vertical dashed lines.
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C Details of the MC3 estimation procedure

In this appendix we provide additional details about prior selection and fully specify the

MC3 algorithm used throughout the main text.

C.1 Prior selection

Since the priors we place on item parameters have limited support, this can result in censoring

during sampling that can bias final estimates. We use the following priors as default values:

P (αj) ∼ Beta(1.5, 1.5, 0.25, 4.0),

P (δj) ∼ Beta(2.0, 2.0,−5.0, 5.0),

P (τjk) ∼ Beta(2.0, 2.0,−6.0, 6.0).

Given the scale introduce by the standard normal prior on the θi parameters, the limits on

item location and option threshold parameters are unlikely to prove problematic. However,

the limits on the discrimination parameters may need further attention as there can be
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censoring at the bounds, as occurred for our 115th House of Representatives application.

For this reason, for that application we instead use Beta(1.5, 1.5, 0.25, 8.0) as the prior for

the α parameters. In general, we suggest inspection of posterior draws to ensure censoring

has not occurred before analysis.

C.2 Algorithm

Our full algorithm is described as follows:

1. At iteration t = 0, set initial parameter values; by default we draw initial values from

the parameters’ prior distributions.

2. For each iteration t = 1, 2, . . . , T :

(a) For each chain b = 1, 2, . . . , N :

i. Draw each θ∗bi fromN
(
θt−1bi , σ2

θi

)
, and set θtbi = θ∗bi with probability p

(
θ∗bi, θ

t−1
bi

)
=

min

{
1,

(
P(θ∗bi)L(Xi|θ∗bi,α

t−1
b ,δt−1

b ,τ t−1
b )

P(θt−1
bi )L(Xi|θt−1

bi ,αt−1
b ,δt−1

b ,τ t−1
b )

)βb}
; otherwise set θtbi = θt−1bi .

ii. Draw each α∗bj fromN
(
αt−1bj , σ

2
αj

)
, and set αtbj = α∗bj with probability p

(
α∗bj, α

t−1
bj

)
=

min

{
1,

(
P(α∗

bj)L(Xj |θtb,α
∗
bj ,δ

t−1
bj ,τ t−1

bj )
P(αt−1

bj )L(Xj |θtb,α
t−1
bj ,δt−1

bj ,τ t−1
bj )

)βb}
; otherwise set αtbj = αt−1bj .

iii. Draw each δ∗bj fromN
(
δt−1bj , σ2

δj

)
, and set δtbj = δ∗bj with probability p

(
δ∗bj, δ

t−1
bj

)
=

min

{
1,

(
P(δ∗bj)L(Xj |θtb,α

t
bj ,δ

∗
bj ,τ

t−1
bj )

P(δt−1
bj )L(Xj |θtb,α

t
bj ,δ

t−1
bj ,τ t−1

bj )

)βb}
; otherwise set δtbj = δt−1bj .

iv. Draw each τ ∗bjk from N
(
τ t−1bjk , σ

2
τj

)
, and set τ tbjk = τ ∗bjk with probability

p
(
τ ∗bjk, τ

t−1
bjk

)
= min

{
1,

(
P(τ∗bjk)L(Xj |θtb,α

t
bj ,δ

t
bj ,τ

∗
bj)

P(τ t−1
bjk )L(Xj |θtb,α

t
bj ,δ

t
bj ,τ

t−1
bj )

)βb}
; otherwise set τ tbjk =

τ t−1bjk .

(b) For each chain b = 1, 2, . . . , N − 1: Swap states between chains b and b + 1 (i.e.,

set θtb = θtb+1 and θtb+1 = θtb, etc.) via a Metropolis step; the swap is accepted with

probability

min

{
1,
P
βb+1

b P βb
b+1

P
βb+1

b+1 P
βb
b

}
,
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Figure A5: Posterior θ draws for Sen. Goldwater (R - AZ) before and after post-processing.
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where Pb = P (θb)P (αb)P (δb)P (τb)L(X|θb, αb, δb, τb).

C.3 Identification

As noted in the main text, the reflective invariance in the model is resolved via post-

processing the draws to identify the model. For example, we post-process the output of our

MC3 algorithm on the voting data from the 92nd Senate (see Appendix F) using Sen. Ted

Kennedy’s θ parameter (restricting its sign to be negative). Figure A5 shows the traceplot

and posterior density for two independent chains for the famous conservative Sen. Barry

Goldwater (R-Arizona). Before post-processing, the chains jump across reflective modes.

Once we impose our constraint on Ted Kennedy, the posterior for Goldwater is restricted to

the positive (conservative) side.

C.4 Discussion of MC3 sampling

As noted in the main text, the goal of having multiple chains at different temperatures is to

improve the ability of the sampler to traverse the posterior efficiently when posterior modes
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may be far apart. The idea is that these “warm” chains will find other high-posterior areas

and pass them down to the “cold” chains to ensure the space is fully explored.

To illustrate the difference in propensity to accept proposals between colder and hotter

chains, we simulated data from 100 respondents and 10 items with four options each and

ran two chains for 1,000 iterations, one with an inverse temperature of 1, the other with an

inverse temperature of 0.2 (no swapping between chains was permitted). For the simula-

tion, the respondents’ latent trait parameters were drawn from a standard normal, the item

discrimination parameters were distributed Beta(1.5, 1.5, 0.5, 3.0), the item location param-

eters were distributed Beta(2.0, 2.0,−3.0, 3.0), and the option threshold parameters were

distributed Beta(2.0, 2.0,−2.0, 0.0), and the responses were selected randomly according to

the response probabilities given by Equation 2 in the main text.

The results are shown in Figure A6. Figure A6a shows the draws for the latent trait

parameter for the first respondent for the “cold” chain and for the “hot” chain, and Figure A6b

shows the density plots for the last 750 draws. You can see the hotter chain explores the

posterior space more freely, and more proposals are accepted; the acceptance rates were 0.29

and 0.73 for the cold and hot chains, respectively. While the density of draws for the cold

chain is a single peak concentrated around a small range of values, the heated chain freely

explores a “melted” posterior surface. It is critical to note that these “warm” chains are not

preserved for inference. Rather, they simply propose new parameter values for colder chains

and only the proper chain (β = 1) is preserved for inference.

D Comparison with alternative estimation methods

We compare our estimation approach with both the MML procedure outlined by Roberts,

Donoghue and Laughlin (2000) and the the MCMC approach outlined in de la Torre, Stark

and Chernyshenko (2006). For the comparison with the MML/EAP approach, we simu-

lated ten datasets for each of ten different condition combinations: varying the number of
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Figure A6: θ1 draws for chains with inverse temperatures 1 and 0.2. The blue line shows
draws from the cold chain with inverse temperature of one, the orange line shows draws from
the hot chain with inverse temperature of 0.2, and the dashed gray line shows the true value
of θ1.

(a) Trace plot of 1,000 θ1 draws

0 200 400 600 800 1000

−
4

−
2

0
2

4

Iteration

θ 1
 d

ra
w

β = 1 β = 0.2 θ1

(b) Density of the last 750 θ1 draws

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

D
en

si
ty

θ1

β = 1 β = 0.2 θ1

respondents (100, 500, or 1000), varying the number of items (10 or 20), and varying the

number of options per item (2 or 4). There were ten condition combinations rather than

twelve because we omit the 100 respondent, 10 item, 4 option and 100 respondent, 20 item,

4 option conditions to avoid having any item with an option that was not chosen by any

respondent. The full set of parameter settings are shown in Table A1.

Table A1: Parameter settings for simulations comparing estimation methods

Cell Number of Respondents Number of Items Number of Options

1 100 10 2
2 500 10 2
3 1000 10 2
4 500 10 4
5 1000 10 4
6 100 20 2
7 500 20 2
8 1000 20 2
9 500 20 4
10 1000 20 4

Parameters were drawn randomly from the following distributions:
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θ ∼ N (0, 1),

α ∼ Beta(1.5, 1.5, 0.0, 3.0),

δ ∼ Beta(2.0, 2.0,−3.0, 3.0),

τ ∼ Beta(2.0, 2.0,−2.0, 0.0).

Responses were selected randomly according to the response probabilities given by Equa-

tion 2 in the main text. We determine a five temperature schedule according to the algorithm

from Atchadé, Roberts and Rosenthal (2011), and record two chains from our MC3 algorithm

run at those temperatures for 5,000 burn-in iterations and 20,000 recorded iterations.

We generate MML/EAP estimates using the GGUM R package (Tendeiro and Castro-

Alvarez 2018). We post-process the MC3 output using the most extreme δ parameter as the

sign constraint, and ensure that the MML/EAP estimates are of the proper sign. For each

parameter type, we calculate the RMSE, and record it. In Table A2 we report an average

by parameter of these findings across cells and replicates. We find that the MML procedure

results in unreasonably extreme estimates for some item parameters, which in turn leads to

less accurate estimates of θ parameters. In general, the MC3 approach resulted in far more

accurate estimates, echoing findings from de la Torre, Stark and Chernyshenko (2006).

Table A2: Comparison of root mean squared error (RMSE) over simulation conditions by
parameter type between an MML/EAP estimation approach and our MC3 approach.

Parameter MML/EAP MC3
θ 1.150 0.525
α 0.519 0.262
δ 2.440 0.613
τ 1.290 0.409

We next compare our MC3 method with de la Torre, Stark and Chernyshenko (2006), who

outline a more standard MCMC algorithm. The previously available software for Bayesian

estimation of GGUM parameters, MCMC GGUM, is a closed-source, Windows-only software.2

2While the software was previously available at computationalpsychology.org/, that
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For identification, the software requires the user to provide an a priori ordering of all ‘items’

along the latent continuum before sampling – something that would be impossible to do

accurately in many political science settings. Moreover, we found that resulting estimates

were actually quite sensitive to these choices and that even when appropriately chosen the

routine was sensitive to starting values.

For the comparison with the MCMC algorithm implemented in MCMC GGUM, we simulated

one set of parameters and responses, drawing parameters from the above distributions for

1000 respondents and 10 items with four options each. The item parameters indices were

altered to sort the δ parameters in ascending order (thus the true ordering of the items was

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)), then the response matrix was simulated, as above.

We ran the MCMC GGUM for one million iterations, altering the starting values and item

ordering constraint. First we provide the true item location values for starting values and the

true item ordering, then we provide as starting values 4.5 while maintaining the true item

ordering, and finally we provide true values as starting values but provide the following item

ordering: (3, 2, 1, 4, 5, 6, 7, 10, 9, 8). Our MC3 algorithm was run under the various starting

value conditions; each chain was produced by running six parallel chains at the temperature

schedule (1, 0.95, 0.9, 0.86, 0.82, 0.78) for 10,000 iterations.

MCMC GGUM demonstrated a sensitivity to the provided item ordering. Using the same

starting values for parameters, we generated one run of 1,000,000 iterations giving the

true ordering, and another of 1,000,000 iterations giving a slight change to the ordering;

rather than provide the true ordering of (1, 2, 3, 4, 5, 6, 7, 8, 9, 10), we provided the ordering

(3, 2, 1, 4, 5, 6, 7, 10, 9, 8). That is, we assume the researcher can correctly place all moderate

items in the middle, all left items on the left, and all right items on the right, but may

not be able to distinguish between exact orderings. The second run resulted in a lack of

convergence,3 with the mean R̂ statistic being 2.226, and differing point estimates for some

website appears to no longer be maintained.
3Note that we could only assess convergence using draws from the item parameters; MCMC
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items, as shown in Figure A7.
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Figure A7: Item Estimates for Differing Item Ordering Constraints

MCMC GGUM also demonstrated a sensitivity to start values. Figure A8 shows posterior

draws for two δ parameters for both our package and MCMC GGUM, with one chain initiated with

parameters at their true values and another with parameters initiated at extreme values. We

see our MC3 algorithm very quickly traversed the posterior to draw values from the highest

density region. However, MCMC GGUM became stuck in a region far from the true posterior

mode and does not converge upon the true posterior even after one million iterations. Note

that in this simulation, we assume that the researcher is able to perfectly know in advance

the relative “difficulty” of each item.

E Additional details on simulations

In Section 4 of the main text we provide simulation evidence illustrating that the presence

of a second dimension will not lead GGUM to provide worse estimates of member ideology.

Here we give additional details of the simulation. First, we simulated responses from 100

respondents to 400 items under a 2PL two-dimensional IRT model; i.e., the probability of a

“one” response was exp(θi1αj1+θi2αj2+δj)

1+exp(θi1αj1+θi2αj2+δj)
. All parameters were drawn from a standard normal

GGUM only records the samples from item parameters, though θ estimates are provided.
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Figure A8: Posterior draws for δ1 and δ2. The left plot shows the first 1,000 draws using
our MC3 algorithm; the left plot shows the full 1 million iteration run from MCMC GGUM. For
both algorithms, we ran two chains; δ was initiated with its true values for the first, but was
initiated at 4.5 for the second. MCMC GGUM was given the correct item ordering.

distribution. We then estimated GGUM parameters using our MC3 algorithm with two

recorded chains, each run with six parallel chains for 5,000 burn-in iterations and 50,000

recorded iterations. The inverse temperature schedule was 1, 0.94, 0.88, 0.82, 0.76, 0.72. We

also estimated one- and two-dimensional NOMINATE model parameters. The NOMINATE

first dimension ideology estimates correlate very strongly with our GGUM θ estimates.

Figure A9: Estimate of GGUM’s ideology parameter θ vs. NOMINATE dimension one
estimates. Estimates correlate at 0.992 and 0.991 respectively.
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The correlation between the models’ ideology estimates and the true parameter values

was strong, and as shown in Table A3, the ideology estimates for each dimension in each

model correlate strongly with only one dimension of the true ideology parameters.
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Table A3: Correlation between GGUM ideology estimates and true parameter values.

Model Correlation with Dim. 1 Truth Correlation with Dim. 2 Truth

GGUM 0.128 0.965
1D NOMINATE Dim. 1 0.220 0.946
2D NOMINATE Dim. 1 0.071 0.970
2D NOMINATE Dim. 2 −0.979 0.122

F Additional considerations of a second dimension

One objection to the GGUM is that ends against the middle voting is merely a function of

a second ideological dimension that helps group the most ideologically extreme members of

each party together. While we freely admit that this may be true for some roll calls, we

are extremely skeptical that this can account for the patterns discussed in the main text.

Simply investigating the stated reasons of, for instance, the Freedom Caucus rebellion on

repealing the Affordable Care Act are unambiguous and clear. These members are not voting

in concordance with Democrats because of some hidden agreement across party lines driving

similar behavior, but from intense and polar opposite policy preferences.

To make this point more clearly, we turn to a period of political history where there

clearly was a second dimension: the United States Senate in 1972 (Poole and Rosenthal

2007). Table A4 shows the fit statistics for the GGUM model and NOMINATE models

(with one and two dimensions) for this period. Here, GGUM does not clearly perform better

than a one-dimensional NOMINATE model and clearly performs far worse than a model

with two dimensions. Further, as shown in Figure A10, there is nothing unusual about the

Southern Democrats as we might worry about for this era. Our interpretation, therefore, is

that where a true second dimension is driving internal divisions a two-dimensional model will

do far better than GGUM in recovering true ideology. However, where it truly is the ends

voting against the middle—as we are increasingly seeing in the contemporary Congress—

GGUM will provide superior estimates of the primary dimension of conflict.
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Figure A10: GGUM θ estimates plotted against NOMINATE dimension one score esti-
mates. Ideology estimates for Southern Democrats are filled red circles, while other members
are marked by open gray circles.
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Table A4: Comparison of fit statistics between the GGUM and NOMINATE for the second
session of the 92nd Senate.

Model % Correct APRE AUC Brier

GGUM 82.788 0.458 0.828 0.118
W-NOMINATE 1 Dimension 82.811 0.458 0.828 0.138
W-NOMINATE 2 Dimensions 86.929 0.588 0.869 0.102
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G Out of sample prediction

One potential concern is that while the GGUM does better in-sample, it may be over-fitting

the data. This is particularly a concern in the Supreme Court, where the data on each vote

is sparse. Here we re-analyzed the same court data as in the main text but now calculated

out-of-sample fit statistics from a 10-fold cross-validation. The GGUM does better in terms

of correct prediction and APRE while the Martin-Quinn scores do slightly better using the

Brier score and the AUC. However, in general we view these fit statistics as essentially being

indiscernable and interpret this as evidence against over-fitting.

Table A5: Out of sample fit statistics

Model Proportion Correct APRE Brier AUC

GGUM 0.809 0.422 0.143 0.783
Martin-Quinn 0.807 0.417 0.140 0.789

H Analysis of the 115th House of Representatives

For the purposes of exposition, the main text focuses on the 116th Congress. However,

here we also analyze Congressional behavior from the 115th House of Representatives to

show that the relative advantage of the GGUM is not exclusive to this dataset. We use

all non-unanimous roll-call votes in the first session. We omit from analysis members who

participated in less that 10% of these roll calls. This results in 435 House members and 647

roll-call votes; we used as observable response categories “Yea” and “Nay” votes. We obtained

member ideology and item parameters using our MC3 algorithm for the GGUM, producing

two recorded chains, each obtained by running six parallel chains for 5,000 burn-in iterations

and 250,000 recorded iterations. The NOMINATE parameters and predicted probabilities

were estimated using the wnominate R package (Poole et al. 2011).4

4wnominate requires you specify a legislator who is conservative on each dimension. We

used the Members who were most conservative on each dimension according to Lewis et al.
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Figure A11: Item Response Functions for two votes in the 115th House of Representatives.
The solid line indicates the item response function. The colored ticks indicate the estimated
ideology (θ), where Yea votes are shown at the top and Nay votes at the bottom.

(a) HRES5 adopting the rules for the 115th
Congress.
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(b) HR4667, a bill for disaster assistance for
Hurricanes Harvey, Irma, and Maria.
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Hoyer Davidson

One need look no further than the fifth vote of the 115th House, adopting the rules for

the next two years, to find ends against the middle voting. Here, the majority of Republicans

voted Yea in opposition to all Democrats joined by Reps. Justin Amash (R-MI), Walter Jones

(R-NC), Thomas Massie (R-WV). These members, all members of the Liberty Caucus, were

not opposing the Republican organization of the House in order to side with Democrats but

rather in pursuit of rules that they felt would advance their more conservative (or in the

case of Jones, his unique) agenda.5 The item response function from the GGUM is shown in

Figure A11a. As it clearly shows, GGUM captures the tendency of some members to vote

in objectively similar ways for subjectively different reasons.

Next, consider the item response function for a bill to appropriate funds for disaster

relief shown in Figure A11b. For some relatively extreme Democrats, it did not provide

(2019): Thomas Garrett, Jr. for the first dimension and Lloyd K. Smucker for the second.
5The recently deceased Rep. Jones has a nearly unique voting record, opposing his party

on many issues such as funding for foreign interventions while still remaining loyal on issues

like abortion (Seelye 2019). Both GGUM and NOMINATE score him as the most liberal

Republican, which sits oddly with his public statements, perhaps showing the limits of any

scaling method based solely on roll calls for measuring the ideology of such a unique member.
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Table A6: Comparison of fit statistics between the GGUM and NOMINATE for the first
session of the 115th House of Representatives.

Model % Correct APRE AUC Brier

GGUM 95.266 0.886 0.952 0.032
W-NOMINATE 1 Dimension 95.131 0.883 0.951 0.036
W-NOMINATE 2 Dimensions 96.387 0.913 0.964 0.029

enough disaster relief funding, while for some relatively extreme Republicans, it provided too

much.Specially marked are the θ estimates for two members who voted “Nay” but for opposite

reasons: Rep. Stenny Hoyer (D-MD) said of the bill, “[It] provides some... relief... but it

ought to do more....” (163 Cong. Rec. 10400–10401 (2017)), and Rep. Warren Davidson

(R-OH) protested, “[It] almost doubles the $44 billion funding request....” (Davidson 2017).

More generally, Table A6 shows that that GGUM outperforms a one-dimensional NOM-

INATE model with a slightly higher APRE, AUC, and lower Brier score. Adding a second

dimension to NOMINATE allows it to outperform both, but given the additional levels of

complexity required, the gains are modest.

However, where GGUM is especially useful is in uncovering the ideology of members

particularly inclined to “vote no from the right” in the Republican party during this Congress.

For monotonic models like NOMINATE, when extremely conservative and liberal members

vote together, it can bias their ideology estimates making the ultra-conservative look more

like a moderate. However, under the GGUM, it may instead allow for those members to agree

because they aremore extreme relative to their colleagues. This is shown in Figure A12 where

we plot the one-dimensional NOMINATE scores against GGUM and highlight the members

of the Liberty Caucus.6

Generalizing this, Table A7 shows that GGUM is able to outperform NOMINATE when

evaluating fit statistics using only members of the Liberty and Freedom caucus (the most

6In all but one case (Walter B. Jones), GGUM identifies these members as being more

conservative than does NOMINATE.
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Figure A12: GGUM θ estimates plotted against NOMINATE dimension one estimates.
Liberty caucus members are marked by filled red circles, other members by open gray circles.

●

●

●

●

●

−2 −1 0 1 2 3
GGUM Ideology (θ)

−
1

0
1

N
O

M
IN

AT
E

 D
im

en
si

on
 1

●

●

Liberty Caucus
Other

Table A7: Comparison of fit statistics between the GGUM and NOMINATE for the first
session of the 115th House of Representatives, Freedom and Liberty Caucuses only.

Model % Correct APRE AUC Brier

Freedom and Liberty Caucuses

GGUM 94.262 0.873 0.931 0.041
W-NOMINATE 1 Dimension 93.445 0.855 0.920 0.051
W-NOMINATE 2 Dimensions 94.797 0.885 0.940 0.044

Liberty Caucus Alone

GGUM 87.204 0.792 0.864 0.093
W-NOMINATE 1 Dimension 82.232 0.711 0.807 0.148
W-NOMINATE 2 Dimensions 84.249 0.744 0.831 0.131

likely rebels for this Congress). GGUM does notably better than the one-dimensional NOM-

INATE on all metrics and even does better than the two-dimensional model using the Brier

score. When focusing on just Liberty Caucus members GGUM does better on all metrics

than both NOMINATE models.

We can take this a step further by providing a general test of the argument in Kirkland

and Slapin (2019) that we should observe party “rebels” at the ideological extreme of the

majority party. However, since standard scaling methods based on a monotonicity assump-

tion automatically move such rebels to the center for their disagreement, this claim has been

difficult to test directly. A further hypothesis is that extremists will be most likely to rebel

on final passage votes, where the reputational gains are largest. In Table A8, we re-calculate
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Table A8: Comparison of fit statistics between the GGUM and NOMINATE for the first
session of the 115th House of Representatives, final passage votes only.

Model % Correct APRE AUC Brier

Full House

GGUM 95.721 0.890 0.955 0.032
W-NOMINATE 1 Dimension 95.370 0.881 0.951 0.038
W-NOMINATE 2 Dimensions 95.401 0.881 0.951 0.037

Freedom and Liberty Caucuses Only

GGUM 95.373 0.890 0.689 0.036
W-NOMINATE 1 Dimension 93.780 0.852 0.534 0.057
W-NOMINATE 2 Dimensions 93.932 0.855 0.544 0.053

our fit statistics using only on final passage votes. With the full house membership, we see

that the GGUMmodel outperforms both NOMINATE models on all of the fit statistics. This

pattern is even more stark when looking at members of the Freedom and Liberty Caucuses.
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